All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 108506 by mnjuly1970 last updated on 17/Aug/20
Answered by mathmax by abdo last updated on 17/Aug/20
A=∫0∞ln(x2+1)x2(x2+3)dx⇒A=x=3t∫0∞ln(1+3t2)3t2(3t2+3)3dt⇒9A=3∫0∞ln(3t2+1)t2(t2+1)dt=3{∫0∞(1t2−1t2+1)ln(3t2+1)dt}=3∫0∞ln(3t2+1)t2dt−3∫0∞ln(3t2+1)t2+1dt=3H−3KH=∫0∞ln(3t2+1)t2dt=[−1tln(1+3t2)]0∞+∫0∞6tt(1+3t2)dt=6∫0∞dt1+3t2=3t=u6∫0∞du3(1+u2)=63×π2=3π3=π3letf(a)=∫0∞ln(a+3t2)t2+1dtwitha>0wehavef(1)=Kf′(a)=∫0∞1(a+3t2)(t2+1)dtletdecomposeF(t)=1(3t2+a)(t2+1)⇒F(t)=αt+β3t2+a+et+ft2+1F(−t)=F(t)⇒−αt+β3t2+a+−et+ft2+1=F(t)⇒α=e=0⇒F(t)=β3t2+a+ft2+1⇒βt2+β+3ft2+af=1⇒(β+3f)t2+β+af=1⇒{β=−3f−3f+af=1⇒{f=1a−3⇒β=−3a−3F(t)=−3(a−3)(3t2+a)+1(a−3)(t2+1)⇒f′(a)=−3a−3∫0∞dt3t2+a+1a−3∫0∞dtt2+1but∫0∞dt3t2+a=13∫0∞dtt2+a3=t=a3u13.3a∫0∞1u2+1a3du=13a×π2⇒f′(a)=−3a−3.π23a+π2(a−3)=−π32.1(a−3)a+π2(a−3)⇒f(a)=−π32∫da(a−3)a+π2ln∣a−3∣+c∫daa(a−3)=a=z∫2zdzz(z2−3)=∫2dz(z−3)(z+3)=13∫(1z−3−1z+3)dz=13ln∣a−3a+3∣⇒f(a)=−π2ln∣a−3a+3∣+π2ln∣a−3∣+cwehavef(0)=π2ln(3)+c=∫0∞ln(3t2)1+t2dt=ln(3)π2+2∫0∞lnt1+t2dt(→0)=π2ln3⇒c=0⇒f(a)=π2ln∣a−3∣−π2ln∣a−3(a+3)2∣=π2ln∣a−3∣−π2ln∣a−3∣+π2ln((a+3)2)=πln(a+3)⇒K=f(1)=πln(1+3)9A=3H−3K=3π−3πln(1+3)⇒A=19(3π−π3ln(1+3))
Commented by mnjuly1970 last updated on 18/Aug/20
.....♣MathematicalAnlysis♣........★PROVETHAT★...1)π33=1−12+14−15+17−18+110−....∞2)π22=1+13−15−17+19+111−...thankyoumasterverythankyoupeacebeuponyouandmercey...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com