Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 108506 by mnjuly1970 last updated on 17/Aug/20

Answered by mathmax by abdo last updated on 17/Aug/20

A =∫_0 ^∞  ((ln(x^2 +1))/(x^2 (x^2  +3)))dx ⇒A =_(x=(√3)t)    ∫_0 ^∞  ((ln(1+3t^2 ))/(3t^2 (3t^2  +3)))(√3)dt  ⇒9A =(√3)∫_0 ^∞   ((ln(3t^2 +1))/(t^2 (t^2 +1)))dt =(√3){∫_0 ^∞ ((1/t^2 )−(1/(t^2 +1)))ln(3t^2 +1)dt}  =(√3)∫_0 ^∞  ((ln(3t^2 +1))/t^2 )dt −(√3)∫_0 ^∞  ((ln(3t^2 +1))/(t^2  +1))dt =(√3)H−(√3)K  H =   ∫_0 ^∞  ((ln(3t^2 +1))/t^2 ) dt  =[−(1/t)ln(1+3t^2 )]_0 ^∞ +∫_0 ^∞  ((6t)/(t(1+3t^2 )))dt  =6 ∫_0 ^∞   (dt/(1+3t^2 )) =_((√3)t =u)    6 ∫_0 ^∞    (du/((√3)(1+u^2 ))) =(6/(√3))×(π/2) =((3π)/(√3)) =π(√3)  let f(a) =∫_0 ^∞   ((ln(a+3t^2 ))/(t^2  +1))dt  with a>0  we have f(1) =K  f^′ (a) =∫_0 ^∞   (1/((a+3t^2 )(t^2  +1)))dt  let decompose   F(t) =(1/((3t^2 +a)(t^2  +1))) ⇒F(t) =((αt +β)/(3t^2  +a)) +((et +f)/(t^2  +1))  F(−t)=F(t) ⇒((−αt +β)/(3t^2  +a)) +((−et +f)/(t^2  +1)) =F(t) ⇒α=e =0 ⇒  F(t) =(β/(3t^2  +a)) +(f/(t^2  +1)) ⇒βt^2  +β +3ft^2  +af =1 ⇒  (β+3f)t^2  +β +af =1 ⇒ { ((β =−3f)),((−3f+af =1)) :} ⇒ { ((f =(1/(a−3)) ⇒)),((β =((−3)/(a−3)))) :}  F(t) =((−3)/((a−3)(3t^2 +a))) +(1/((a−3)(t^2  +1))) ⇒  f^′ (a) =((−3)/(a−3))∫_0 ^∞  (dt/(3t^2  +a)) +(1/(a−3))∫_0 ^∞   (dt/(t^2  +1))  but  ∫_0 ^∞   (dt/(3t^2  +a)) =(1/3)∫_0 ^∞   (dt/(t^2  +(a/3)))  =_(t =(√(a/3))u)    (1/3).(3/a)∫_0 ^∞    (1/(u^2  +1))((√a)/(√3))du  =(1/(√(3a)))×(π/2) ⇒f^′ (a) =((−3)/(a−3)).(π/(2(√3)(√a))) +(π/(2(a−3)))  =−((π(√3))/2).(1/((a−3)(√a))) +(π/(2(a−3))) ⇒f(a) =−((π(√3))/2) ∫  (da/((a−3)(√a))) +(π/2)ln∣a−3∣ +c  ∫  (da/((√a)(a−3))) =_((√a)=z)    ∫  ((2zdz)/(z(z^2 −3))) =∫  ((2dz)/((z−(√3))(z+(√3))))  =(1/(√3))∫ ((1/(z−(√3)))−(1/(z+(√3))))dz =(1/(√3))ln∣(((√a)−(√3))/((√a)+(√3)))∣ ⇒  f(a) =−(π/2)ln∣(((√a)−(√3))/((√a)+(√3)))∣ +(π/2)ln∣a−3∣ +c  we have f(0) =(π/2)ln(3)+c =∫_0 ^∞  ((ln(3t^2 ))/(1+t^2 )) dt   =ln(3)(π/2) +2 ∫_0 ^∞  ((lnt)/(1+t^2 )) dt(→0) =(π/2)ln3 ⇒c=0 ⇒  f(a) =(π/2)ln∣a−3∣−(π/2)ln∣((a−3)/(((√a)+(√3))^2 ))∣ =(π/2)ln∣a−3∣−(π/2)ln∣a−3∣  +(π/2)ln(((√a)+(√3))^2 ) =πln((√a)+(√3))  ⇒K =f(1) =πln(1+(√3))  9A =(√3)H −(√3)K =3π −(√3)π ln(1+(√3)) ⇒  A =(1/9)(3π −π(√3)ln(1+(√3)))

A=0ln(x2+1)x2(x2+3)dxA=x=3t0ln(1+3t2)3t2(3t2+3)3dt9A=30ln(3t2+1)t2(t2+1)dt=3{0(1t21t2+1)ln(3t2+1)dt}=30ln(3t2+1)t2dt30ln(3t2+1)t2+1dt=3H3KH=0ln(3t2+1)t2dt=[1tln(1+3t2)]0+06tt(1+3t2)dt=60dt1+3t2=3t=u60du3(1+u2)=63×π2=3π3=π3letf(a)=0ln(a+3t2)t2+1dtwitha>0wehavef(1)=Kf(a)=01(a+3t2)(t2+1)dtletdecomposeF(t)=1(3t2+a)(t2+1)F(t)=αt+β3t2+a+et+ft2+1F(t)=F(t)αt+β3t2+a+et+ft2+1=F(t)α=e=0F(t)=β3t2+a+ft2+1βt2+β+3ft2+af=1(β+3f)t2+β+af=1{β=3f3f+af=1{f=1a3β=3a3F(t)=3(a3)(3t2+a)+1(a3)(t2+1)f(a)=3a30dt3t2+a+1a30dtt2+1but0dt3t2+a=130dtt2+a3=t=a3u13.3a01u2+1a3du=13a×π2f(a)=3a3.π23a+π2(a3)=π32.1(a3)a+π2(a3)f(a)=π32da(a3)a+π2lna3+cdaa(a3)=a=z2zdzz(z23)=2dz(z3)(z+3)=13(1z31z+3)dz=13lna3a+3f(a)=π2lna3a+3+π2lna3+cwehavef(0)=π2ln(3)+c=0ln(3t2)1+t2dt=ln(3)π2+20lnt1+t2dt(0)=π2ln3c=0f(a)=π2lna3π2lna3(a+3)2=π2lna3π2lna3+π2ln((a+3)2)=πln(a+3)K=f(1)=πln(1+3)9A=3H3K=3π3πln(1+3)A=19(3ππ3ln(1+3))

Commented by mnjuly1970 last updated on 18/Aug/20

                     .....♣  Mathematical   Anlysis ♣.....                                     ...★ PROVE    THAT★...                            1)    (π/(3(√3))) =1−(1/2) +(1/4) −(1/5) +(1/7) −(1/8) +(1/(10)) −....∞                            2 ) (π/(2(√2))) =1+ (1/3) −(1/5)− (1/7) +(1/9) +(1/(11))−...   thank you master very thank you   peace be upon you and mercey...

.....MathematicalAnlysis........PROVETHAT...1)π33=112+1415+1718+110....2)π22=1+131517+19+111...thankyoumasterverythankyoupeacebeuponyouandmercey...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com