Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 108864 by I want to learn more last updated on 19/Aug/20

Commented by I want to learn more last updated on 19/Aug/20

What is the maximum length of  PQ

WhatisthemaximumlengthofPQ

Answered by mr W last updated on 19/Aug/20

f(x)=x^3 −3x−2  g(x)=2x−2  f′(x)=3x^2 −3  such that PQ is maximum, tangent  at Q must be parallel to g(x).  f′(x)=3x^2 −3=g′(x)=2  ⇒x=±(√(5/3))  at x=−(√(5/3)):  y_P =−2(√(5/3))−2  y_Q =−(5/3)(√(5/3))+3(√(5/3))−2  PQ=−(5/3)(√(5/3))+3(√(5/3))−2−(−2(√(5/3))−2)  =((10(√(15)))/9)  at x=(√(5/3)):  y_P =2(√(5/3))−2  y_Q =(5/3)(√(5/3))−3(√(5/3))−2  PQ=2(√(5/3))−2−((5/3)(√(5/3))−3(√(5/3))−2)  =((10(√(15)))/9)    ⇒PQ_(max,local) =((10(√(15)))/9)    PQ_(max) =∞ when x→±∞

f(x)=x33x2g(x)=2x2f(x)=3x23suchthatPQismaximum,tangentatQmustbeparalleltog(x).f(x)=3x23=g(x)=2x=±53atx=53:yP=2532yQ=5353+3532PQ=5353+3532(2532)=10159atx=53:yP=2532yQ=53533532PQ=2532(53533532)=10159PQmax,local=10159PQmax=whenx±

Commented by I want to learn more last updated on 25/Aug/20

Thanks sir, I appreciate

Thankssir,Iappreciate

Answered by Aziztisffola last updated on 19/Aug/20

P(x ; 2x−2) and Q(x ; x^3 −3x−2)  PQ(x)=(√(0^2 +( x^3 −3x−2−2x+2)^2 ))         =x^3 −5x  PQ(x)′=3x^2 −5  PQ(x)′=0⇒3x^2 −5=0⇒x=+_− (√(5/3))   min in x=(√(5/3))   Max local in x=−(√(5/3)) ; look at variation of PQ   then PQ(−(√(5/3)))=(−(√(5/3)))^3 +5(√(5/3))    =((10(√(15)))/9)

P(x;2x2)andQ(x;x33x2)PQ(x)=02+(x33x22x+2)2=x35xPQ(x)=3x25PQ(x)=03x25=0x=+53mininx=53Maxlocalinx=53;lookatvariationofPQthenPQ(53)=(53)3+553=10159

Commented by I want to learn more last updated on 25/Aug/20

Thanks sir, i appreciate

Thankssir,iappreciate

Terms of Service

Privacy Policy

Contact: info@tinkutara.com