Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 109246 by peter frank last updated on 22/Aug/20

Answered by Ar Brandon last updated on 22/Aug/20

a. I=∫(dx/((x+1)(√(x^2 +4x+2))))=∫(dx/((x+1)(√((x+2)^2 −2))))      x+2=(√2)chθ⇒dx=(√2)shθdθ     I=∫((shθdθ)/(((√2)chθ−1)(√(sh^2 θ))))=±∫(dθ/( (√2)chθ−1))     chθ=((1+t^2 )/(1−t^2 )) , t=tanh((θ/2))

a.I=dx(x+1)x2+4x+2=dx(x+1)(x+2)22x+2=2chθdx=2shθdθI=shθdθ(2chθ1)sh2θ=±dθ2chθ1chθ=1+t21t2,t=tanh(θ2)

Answered by Ar Brandon last updated on 22/Aug/20

b.  J=∫(dx/((x^2 +1)(√(x^2 +2)))) , x=tanθ        J=∫(dθ/( (√(tan^2 θ+2))))=∫((cosθ dθ)/( (√(sin^2 θ+2cos^2 θ))))           =∫((cosθ)/( (√(2−sin^2 θ))))dθ=Arcsin(((sinθ)/( (√2))))+C

b.J=dx(x2+1)x2+2,x=tanθJ=dθtan2θ+2=cosθdθsin2θ+2cos2θ=cosθ2sin2θdθ=Arcsin(sinθ2)+C

Answered by Ar Brandon last updated on 22/Aug/20

a.  I=∫(dx/((x+1)(√(x^2 +4x+2)))) , u=(1/(x+1))⇒du=((−dx)/((x+1)^2 ))  I=∫((−(x+1)^2 u)/( (√((x+2)^2 −2))))du=−∫((udu)/( (√((u+u^2 )^2 −2u^4 ))))    =−∫(du/( (√((1+u)^2 −2u^2 ))))=−∫(du/( (√(1+2u−u^2 ))))    =−∫(du/( (√(2−(u−1)^2 ))))=Arcos(((u−1)/( (√2))))+C

a.I=dx(x+1)x2+4x+2,u=1x+1du=dx(x+1)2I=(x+1)2u(x+2)22du=udu(u+u2)22u4=du(1+u)22u2=du1+2uu2=du2(u1)2=Arcos(u12)+C

Commented by peter frank last updated on 22/Aug/20

thank you

thankyou

Answered by mathmax by abdo last updated on 22/Aug/20

a) I =∫(dx/((x+1)(√(x^2  +4x +2)))) ⇒ I =∫  (dx/((x+1)(√((x+2)^2 −2))))  =_(x+2 =(√2)ch(t))     ∫  (((√2)sh(t))/((−2+(√2)cht +1)(√2)sh(t)))dt  =∫ (dt/(−1+(√2)((e^t  +e^(−t) )/2))) =∫   ((2dt)/(−2+(√2)e^t  +(√2)e^(−t) ))  =_(e^t  =u)     2 ∫   (du/(u(−2+(√2)u +(√2)u^(−1) ))) =2 ∫  (du/(−2u+(√2)u^2  +(√2)))  =(√2)∫ (du/(u^2 −(√2)u +1)) =(√2)∫ (du/(u^2 −2(1/(√2))u +(1/2)+(1/2)))  =(√2)∫  (du/((u−(1/(√2)))^2  +(1/2))) =_(u−(1/(√2))=(z/(√2)))   (√2)∫   (dz/((√2).(1/2)(1+z^2 ))) =∫ ((2dz)/(1+z^2 ))  =2arctanz +C =2arctan(u(√2)−1) +C  we have t =argch(((x+2)/(√2))) =ln(((x+2)/(√2))+(√((((x+2)/(√2)))^2 −1))) ⇒  u =e^t  =((x+2)/(√2)) +(√((((x+2)/(√2)))^2 −1)) ⇒  I =2arctan((√2){((x+2)/(√2))+(√((((x+2)/(√2)))^2 −1))}) +C

a)I=dx(x+1)x2+4x+2I=dx(x+1)(x+2)22=x+2=2ch(t)2sh(t)(2+2cht+1)2sh(t)dt=dt1+2et+et2=2dt2+2et+2et=et=u2duu(2+2u+2u1)=2du2u+2u2+2=2duu22u+1=2duu2212u+12+12=2du(u12)2+12=u12=z22dz2.12(1+z2)=2dz1+z2=2arctanz+C=2arctan(u21)+Cwehavet=argch(x+22)=ln(x+22+(x+22)21)u=et=x+22+(x+22)21I=2arctan(2{x+22+(x+22)21})+C

Commented by mathmax by abdo last updated on 22/Aug/20

I =2arctan(x+1 +(√((x+2)^2 −2))) +C

I=2arctan(x+1+(x+2)22)+C

Commented by peter frank last updated on 22/Aug/20

thank you

thankyou

Commented by mathmax by abdo last updated on 22/Aug/20

you are welcome

youarewelcome

Answered by mathmax by abdo last updated on 22/Aug/20

b) A =∫  (dx/((x^2 +1)(√(x^2  +2)))) ⇒ A =_(x=(√2)sht)    ∫  (((√2)ch(t))/((2sh^2 t +1)(√2)ch(t)))dt  =∫  (dt/(2.((ch(2t)−1)/2)+1)) =∫  (dt/(ch(2t))) =_(2t=u)   ∫  (du/(2ch(u)))  = ∫  (du/(e^u  +e^(−u) ))  =_(e^u  =z)     ∫  (dz/(z(z+z^(−1) ))) =∫ (dz/(z^2  +1)) =arctanz +c  =arctan(z) +c = arctan(e^u ) +c =arctan(e^(2t) )+c  t =argsh((x/(√2))) =ln((x/(√2))+(√(1+(x^2 /2)))) ⇒e^(2t)  =((x/2)+(√(1+(x^2 /2))))^2  ⇒  A =arctan{((x/2)+(√(1+(x^2 /2))))^2 } +C

b)A=dx(x2+1)x2+2A=x=2sht2ch(t)(2sh2t+1)2ch(t)dt=dt2.ch(2t)12+1=dtch(2t)=2t=udu2ch(u)=dueu+eu=eu=zdzz(z+z1)=dzz2+1=arctanz+c=arctan(z)+c=arctan(eu)+c=arctan(e2t)+ct=argsh(x2)=ln(x2+1+x22)e2t=(x2+1+x22)2A=arctan{(x2+1+x22)2}+C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com