Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 109658 by 150505R last updated on 24/Aug/20

Answered by mathmax by abdo last updated on 25/Aug/20

A =∫_0 ^(e/π)  ((arctan(((πx)/e)))/(πx +e)) dx   changement ((πx)/e) =t give  A =∫_0 ^1  ((arctan(t))/(et +e)).(e/π) dt =(1/π) ∫_0 ^1  ((arctan(t))/(t+1)) dt ⇒πA =∫_0 ^1  ((arctan(t))/(1+t))dt  =_(by parts)    [ln(1+t)arctan(t)]_0 ^1  −∫_0 ^1    ((ln(1+t))/(1+t^2 )) dt  =(π/4)ln(2)−∫_0 ^1  ((ln(1+t))/(1+t^2 )) dt  but ∫_0 ^(1 )  ((ln(1+t))/(1+t^2 ))dt =_(t=tanθ)   ∫_0 ^(π/4)  ((ln(1+tanθ))/(1+tan^2 θ))(1+tan^2 θ)dθ =∫_0 ^(π/4) ln(1+tanθ)dθ=(π/8)ln(2)(proved)  ⇒πA =(π/4)ln(2)−(π/8)ln(2) =(π/8)ln(2) ⇒★ A =((ln(2))/8)★

A=0eπarctan(πxe)πx+edxchangementπxe=tgiveA=01arctan(t)et+e.eπdt=1π01arctan(t)t+1dtπA=01arctan(t)1+tdt=byparts[ln(1+t)arctan(t)]0101ln(1+t)1+t2dt=π4ln(2)01ln(1+t)1+t2dtbut01ln(1+t)1+t2dt=t=tanθ0π4ln(1+tanθ)1+tan2θ(1+tan2θ)dθ=0π4ln(1+tanθ)dθ=π8ln(2)(proved)πA=π4ln(2)π8ln(2)=π8ln(2)A=ln(2)8

Terms of Service

Privacy Policy

Contact: info@tinkutara.com