All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 109658 by 150505R last updated on 24/Aug/20
Answered by mathmax by abdo last updated on 25/Aug/20
A=∫0eπarctan(πxe)πx+edxchangementπxe=tgiveA=∫01arctan(t)et+e.eπdt=1π∫01arctan(t)t+1dt⇒πA=∫01arctan(t)1+tdt=byparts[ln(1+t)arctan(t)]01−∫01ln(1+t)1+t2dt=π4ln(2)−∫01ln(1+t)1+t2dtbut∫01ln(1+t)1+t2dt=t=tanθ∫0π4ln(1+tanθ)1+tan2θ(1+tan2θ)dθ=∫0π4ln(1+tanθ)dθ=π8ln(2)(proved)⇒πA=π4ln(2)−π8ln(2)=π8ln(2)⇒★A=ln(2)8★
Terms of Service
Privacy Policy
Contact: info@tinkutara.com