All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 11019 by ridwan balatif last updated on 07/Mar/17
Answered by bahmanfeshki last updated on 07/Mar/17
I=∫2nxe−2x+4dx=−12([xe−2x+4]2n−∫2ne−2x+4dx)
Answered by geovane10math last updated on 07/Mar/17
∫2nx⋅e−2x+Adx=F(n)−F(2)∫x⋅e−2x+Adx=∫x⋅e−2x⋅eAdx==eA∫x⋅e−2xdx−2x=u⇒dudx=−2⇒dx=−du2eA∫−u2⋅eudu=eA⋅12⋅∫u⋅eudu==eA2∫u⋅eudu∫u⋅euduu=s,eudu=dt∫sdt=st−∫tds∫u⋅eudu=u(eu+c1)−∫[eu+c1]du∫u⋅eudu=ueu+c1u−(eu+c1u+C)∫ueudu=ueu+c1u−eu−c1u−C∫ueudu=eu(u−1)−CeA2[eu(u−1)−C]=eA2[e−2x(−2x−1−C)]∫x⋅e−2x+Adx=−eA2[e−2x(2x+1+C)]F(n)−F(2)==−eA2[e−2n(2n+1+C)]−(−eA2[(5+C)])=−eA2[e−2n(2n+1+C)]+eA2(5+C)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com