Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 11019 by ridwan balatif last updated on 07/Mar/17

Answered by bahmanfeshki last updated on 07/Mar/17

I=∫_2 ^n xe^(−2x+4)  dx=−(1/2)([xe^(−2x+4) ]_2 ^n −∫_(2  ) ^n e^(−2x+4)  dx)

I=2nxe2x+4dx=12([xe2x+4]2n2ne2x+4dx)

Answered by geovane10math last updated on 07/Mar/17

∫_2 ^n x∙e^(−2x+A)  dx = F(n) − F(2)  ∫x∙e^(−2x+A)  dx = ∫x∙e^(−2x) ∙e^A  dx =   = e^A ∫x∙e^(−2x)  dx   −2x = u ⇒ (du/dx) = −2 ⇒ dx = − (du/2)  e^A ∫− (u/2)∙e^u  du = e^A ∙(1/2)∙∫u∙e^u  du =   = (e^A /2)∫u∙e^u  du  ∫u∙e^u  du            u = s , e^u  du = dt  ∫s dt = st − ∫t ds  ∫u∙e^u  du = u(e^u  + c_1 ) − ∫[e^u  + c_1 ]du  ∫u∙e^u  du = ue^u  + c_1 u − (e^u  + c_1 u + C)  ∫ue^u  du = ue^u  + c_1 u − e^u  − c_1 u − C  ∫ue^u  du = e^u (u − 1) − C  (e^A /2)[e^u (u − 1) − C] = (e^A /2)[e^(−2x) (−2x − 1 − C)]  ∫x∙e^(−2x+A)  dx = − (e^A /2)[e^(−2x) (2x +1 + C)]  F(n) − F(2) =   = − (e^A /2)[e^(−2n) (2n + 1 + C)] − (− (e^A /2)[(5 + C)])   = − (e^A /2)[e^(−2n) ( 2n + 1 + C)] + (e^A /2)(5 + C)

2nxe2x+Adx=F(n)F(2)xe2x+Adx=xe2xeAdx==eAxe2xdx2x=ududx=2dx=du2eAu2eudu=eA12ueudu==eA2ueuduueuduu=s,eudu=dtsdt=sttdsueudu=u(eu+c1)[eu+c1]duueudu=ueu+c1u(eu+c1u+C)ueudu=ueu+c1ueuc1uCueudu=eu(u1)CeA2[eu(u1)C]=eA2[e2x(2x1C)]xe2x+Adx=eA2[e2x(2x+1+C)]F(n)F(2)==eA2[e2n(2n+1+C)](eA2[(5+C)])=eA2[e2n(2n+1+C)]+eA2(5+C)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com