Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 114777 by mathdave last updated on 21/Sep/20

Answered by maths mind last updated on 21/Sep/20

(√x)=t⇒dx=2tdt  =∫_0 ^(π/2) 2tcl_2 (t)dt  =∫_0 ^(π/2) 2tΣ_(k≥1) ((sin(kt))/k^2 )dt  =2Σ_(k≥1) ∫_0 ^(π/2) ((sin(kt))/k^2 )tdt  ∫_0 ^(π/2) ((sin(kt))/k^2 )tdt=(1/k^2 ){[((−cos(kt))/k)t]_0 ^(π/2) +∫_0 ^(π/2) ((cos(kt))/k)dt}  =(π/2)[((−cos(((kπ)/2)))/k^3 )]+(1/k^4 )(sin(k(π/2)))  sin(((kπ)/2))=0  if k=2m  sin(((kπ)/2))=(−1)^m   if k=2m+1  cos(((kπ)/2))  =1 si k=4m,cos(((kπ)/2))=−1 ifk=4m+2  cos(((kπ)/2))=0 if k=4m+1 or 4m+3  so we get Σ_(k≥1) (π/2).[((−cos(((kπ)/2)))/k^3 )]=Σ_(m≥0) (π/2).[((−cos((4m+2)(π/2)))/((4m+2)^3 ))]Σ_(m≥1) −(π/2)((cos(4m.(π/2)))/((4m)^3 ))    +Σ_(m≥0) ((sin((π/2)(2m+1)))/((2m+1)^4 ))  =Σ_(m≥0) (π/2).(1/(8(2m+1)^3 ))+−(π/2).Σ_(m≥1) (1/(64m^3 ))+Σ_(m≥0) (((−1)^m )/((2m+1)^4 ))  =(π/(16))Σ_(m≥0) (1/((2m+1)^3 ))+Σ_(m≥0) (((−1)^m )/((2m+1)^4 ))  β(s)=Σ_(n≥0) (((−1)^n )/((2n+1)^s ))  Dirichlet Betta function  Σ(((−1)^m )/((2m+1)^4 ))=β(4),Σ(1/((2m+1)^3 ))=(ζ(3)−(1/8)ζ(3))=(7/8)ζ(3)  we get  =(π/(16)).(7/( 8))ζ(3)−(π/(128))ζ(3)+β(4)=((6π)/(128))ζ(3)+β(4)=    ∫_0 ^(π/2) cl_2 ((√t))dt=2∫_0 ^1 tcl_2 (t)dt=2.[((6π)/(128))+β(4)]  =((12π)/(128))ζ(3)+2β(4)=((3π)/(32))ζ(3)+2β(4)

x=tdx=2tdt=0π22tcl2(t)dt=0π22tk1sin(kt)k2dt=2k10π2sin(kt)k2tdt0π2sin(kt)k2tdt=1k2{[cos(kt)kt]0π2+0π2cos(kt)kdt}=π2[cos(kπ2)k3]+1k4(sin(kπ2))sin(kπ2)=0ifk=2msin(kπ2)=(1)mifk=2m+1cos(kπ2)=1sik=4m,cos(kπ2)=1ifk=4m+2cos(kπ2)=0ifk=4m+1or4m+3sowegetk1π2.[cos(kπ2)k3]=m0π2.[cos((4m+2)π2)(4m+2)3]m1π2cos(4m.π2)(4m)3+m0sin(π2(2m+1))(2m+1)4=m0π2.18(2m+1)3+π2.m1164m3+m0(1)m(2m+1)4=π16m01(2m+1)3+m0(1)m(2m+1)4β(s)=n0(1)n(2n+1)sDirichletBettafunctionΣ(1)m(2m+1)4=β(4),Σ1(2m+1)3=(ζ(3)18ζ(3))=78ζ(3)weget=π16.78ζ(3)π128ζ(3)+β(4)=6π128ζ(3)+β(4)=0π2cl2(t)dt=201tcl2(t)dt=2.[6π128+β(4)]=12π128ζ(3)+2β(4)=3π32ζ(3)+2β(4)

Commented by Tawa11 last updated on 06/Sep/21

great sir

greatsir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com