Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 119979 by huotpat last updated on 28/Oct/20

Commented by huotpat last updated on 28/Oct/20

N when n→+∞ is not x→+∞

Nwhenn+isnotx+

Answered by mathmax by abdo last updated on 28/Oct/20

let f(x) =(((x+1)^(n+1) −(x+1))/x^3 )−(n/x^2 )−((n(n+1))/(2x)) ⇒  f(x)=(((x+1)^(n+1) −(x+1)−nx−2^(−1) n(n+1)x^2 )/x^3 ) we knowthat  (1+x)^α  =1+(α/(1!))x +((α(α−1))/(2!))x^2  +((α(α−1)(α−2))/(3!)) x^3  +o(x^4 )⇒  (1+x)^(n+1)  =1+(n+1)x+(((n+1)n)/2)x^2  +(((n+1)n(n−1))/6) x^3  +o(x^4 ) ⇒  (x+1)^(n+1) −(x+1)−nx−2^(−1) n(n+1)x^2 ∼  1+(n+1)x +((n(n+1))/2)x^2  +(((n−1)n(n+1))/6) x^3 −x−1−nx−(1/2)n(n+1)x^2   =((n(n−1)(n+1))/6) x^3  ⇒f(x)∼((n(n−1)(n+1))/6) ⇒  lim_(x→0)   f(x) =((n(n−1)(n+1))/6)

letf(x)=(x+1)n+1(x+1)x3nx2n(n+1)2xf(x)=(x+1)n+1(x+1)nx21n(n+1)x2x3weknowthat(1+x)α=1+α1!x+α(α1)2!x2+α(α1)(α2)3!x3+o(x4)(1+x)n+1=1+(n+1)x+(n+1)n2x2+(n+1)n(n1)6x3+o(x4)(x+1)n+1(x+1)nx21n(n+1)x21+(n+1)x+n(n+1)2x2+(n1)n(n+1)6x3x1nx12n(n+1)x2=n(n1)(n+1)6x3f(x)n(n1)(n+1)6limx0f(x)=n(n1)(n+1)6

Answered by Dwaipayan Shikari last updated on 28/Oct/20

lim_(n→+∞) n[Π_p ^n (Σ_(k=1) ^p (1/k)−(1/(k+1)))]  lim_(n→+∞) n[Π_p ^n (1−(1/(p+1)))]  lim_(n→+∞) n[Π_p ^n (p/(p+1))]=n.(1/2).(2/3).(3/4)......(1/n).(n/(n+1))  lim_(n→∞) =(n/(1+n))=(1/(1+(1/n)))=1

limn+n[np(pk=11k1k+1)]limn+n[np(11p+1)]limn+n[nppp+1]=n.12.23.34......1n.nn+1limn=n1+n=11+1n=1

Answered by mathmax by abdo last updated on 28/Oct/20

let g(x) =((x+2x^2 +3x^3 +...+nx^n )/(x−1))−((n(n+1))/(2(x−1)))  (x→1)  we have 1+x +x^2 +...+x^n  =((x^(n+1) −1)/(x−1))  (x≠1) by d erivation  we get  1+2x+...+nx^(n−1)  =(dx/dx)(((x^(n+1) −1)/(x−1))) =((nx^(n+1) −(n+1)x^n +1)/((x−1)^2 )) ⇒  x +2x^2 +3x^3 +....+nx^n  =((nx^(n+2) −(n+1)x^(n+1) +x)/((x−1)^2 )) ⇒  g(x)=((nx^(n+2) −(n+1)x^(n+1)  +x)/((x−1)^2 ))−((n(n+1))/(2(x−1)))  ⇒  g(x)=((2nx^(n+2) −2(n+1)x^(n+1) +2x)/(2(x−1)^2 ))−((n(n+1)(x−1))/(2(x−1)^2 ))  =((2nx^(n+2) −2(n+1)x^(n+1) +2x−n(n+1)(x−1))/(2(x−1)^2 ))  let u(x)=2nx^(n+2) −2(n+1)x^(n+1) +2x−n(n+1)(x−1)  v(x)=2(x−1)^2  ⇒  u^′ (x)=2n(n+2)x^(n+1) −2(n+1)^2 x^n  +2−n(n+1)  u^((2)) (x) =2n(n+2)(n+1)x^n −2n(n+1)^2  x^(n−1)  ⇒  u^((2)) (1) =2n(n+2)(n+1)−2n(n+1)^2   =2n(n+1){n+2−n−1) =2n(n+1)  v(x)=2(x−1)^2  ⇒v^′ (x)=4(x−1) ⇒v^((2)) (x)=4 ⇒  lim_(x→1) g(x) =lim_(x→1)  ((u^((2)) (x))/(v^((2)) (x))) =((2n(n+1))/4) =((n(n+1))/2)

letg(x)=x+2x2+3x3+...+nxnx1n(n+1)2(x1)(x1)wehave1+x+x2+...+xn=xn+11x1(x1)byderivationweget1+2x+...+nxn1=dxdx(xn+11x1)=nxn+1(n+1)xn+1(x1)2x+2x2+3x3+....+nxn=nxn+2(n+1)xn+1+x(x1)2g(x)=nxn+2(n+1)xn+1+x(x1)2n(n+1)2(x1)g(x)=2nxn+22(n+1)xn+1+2x2(x1)2n(n+1)(x1)2(x1)2=2nxn+22(n+1)xn+1+2xn(n+1)(x1)2(x1)2letu(x)=2nxn+22(n+1)xn+1+2xn(n+1)(x1)v(x)=2(x1)2u(x)=2n(n+2)xn+12(n+1)2xn+2n(n+1)u(2)(x)=2n(n+2)(n+1)xn2n(n+1)2xn1u(2)(1)=2n(n+2)(n+1)2n(n+1)2=2n(n+1){n+2n1)=2n(n+1)v(x)=2(x1)2v(x)=4(x1)v(2)(x)=4limx1g(x)=limx1u(2)(x)v(2)(x)=2n(n+1)4=n(n+1)2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com