Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 120059 by A8;15: last updated on 29/Oct/20

Answered by Lordose last updated on 29/Oct/20

  Firstly, compute the indefinite integral  I = ∫xsec(2x)dx = (1/4)∫asec(a)da {a=2x}  I = (1/4)(alntan((a/2)+(π/4)) − ∫lntan((a/2)+(π/4))da)   {IBP}  set (a/2) + (π/4) = y ⇒ da=2dy  I = (1/4)(alntan(y) − 2∫lntan(y)dy)  Ω = ∫lntan(y)dy     {tan(y) = ((1−e^(−2iy) )/(1+e^(−2iy) ))}  Ω = ∫ln(1−e^(−2iy) )dy − ∫ln(1+e^(−2iy) )dy  set w=e^(−2iy ) ⇒dw=((2w)/i)dy  Ω = (i/2)∫ ((ln(1−w))/w)dw − (i/2)∫ ((ln(1+w))/w)dw  Ω = −(i/2)Li_2 (w) − (i/2)(−Li_2 (−w)) + C  Ω = (i/2)(Li_2 (−e^(−2iy) ) − Li_2 (e^(−2iy) ))  I=(1/4)(alntan(y) − i(Li_2 (−e^(−2iy) )−Li_2 (e^(−2iy) )))  I = (1/2)xlntan(x+(π/4)) − (i/4)(Li_2 (−e^(−i(2x+(π/2))) ) − Li_2 (e^(−i(2x+(π/2))) )) + C  ∫_0 ^( 1) xsec(2x)dx =( (1/2)lntan(((4+π)/4)) − (i/4)Li_2 (−e^(−i(((4+π)/2))) ) + (i/4)Li_2 (e^(−i(((4+π)/2))) )) + (i/4)(Li_2 (−e^(−((iπ)/2)) )− Li_2 (e^(−((iπ)/2)) ))  ∫_0 ^( 1) xsec(2x)dx = ∞  The integral diverges.

Firstly,computetheindefiniteintegralI=xsec(2x)dx=14asec(a)da{a=2x}I=14(alntan(a2+π4)lntan(a2+π4)da){IBP}seta2+π4=yda=2dyI=14(alntan(y)2lntan(y)dy)Ω=lntan(y)dy{tan(y)=1e2iy1+e2iy}Ω=ln(1e2iy)dyln(1+e2iy)dysetw=e2iydw=2widyΩ=i2ln(1w)wdwi2ln(1+w)wdwΩ=i2Li2(w)i2(Li2(w))+CΩ=i2(Li2(e2iy)Li2(e2iy))I=14(alntan(y)i(Li2(e2iy)Li2(e2iy)))I=12xlntan(x+π4)i4(Li2(ei(2x+π2))Li2(ei(2x+π2)))+C01xsec(2x)dx=(12lntan(4+π4)i4Li2(ei(4+π2))+i4Li2(ei(4+π2)))+i4(Li2(eiπ2)Li2(eiπ2))01xsec(2x)dx=Theintegraldiverges.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com