All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 120059 by A8;15: last updated on 29/Oct/20
Answered by Lordose last updated on 29/Oct/20
Firstly,computetheindefiniteintegralI=∫xsec(2x)dx=14∫asec(a)da{a=2x}I=14(alntan(a2+π4)−∫lntan(a2+π4)da){IBP}seta2+π4=y⇒da=2dyI=14(alntan(y)−2∫lntan(y)dy)Ω=∫lntan(y)dy{tan(y)=1−e−2iy1+e−2iy}Ω=∫ln(1−e−2iy)dy−∫ln(1+e−2iy)dysetw=e−2iy⇒dw=2widyΩ=i2∫ln(1−w)wdw−i2∫ln(1+w)wdwΩ=−i2Li2(w)−i2(−Li2(−w))+CΩ=i2(Li2(−e−2iy)−Li2(e−2iy))I=14(alntan(y)−i(Li2(−e−2iy)−Li2(e−2iy)))I=12xlntan(x+π4)−i4(Li2(−e−i(2x+π2))−Li2(e−i(2x+π2)))+C∫01xsec(2x)dx=(12lntan(4+π4)−i4Li2(−e−i(4+π2))+i4Li2(e−i(4+π2)))+i4(Li2(−e−iπ2)−Li2(e−iπ2))∫01xsec(2x)dx=∞Theintegraldiverges.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com