Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 122860 by greg_ed last updated on 20/Nov/20

Answered by MJS_new last updated on 20/Nov/20

both sides ≥0 ⇒ squaring allowed  x^2 +y^2 +2∣xy∣≤2(x^2 +y^2 )+2∣x^2 −y^2 ∣  −x^2 +2∣xy∣−y^2 ≤2∣x^2 −y^2 ∣  now xy is either <0 or ≥0   {: ((−(x+y)^2 )),((−(x−y)^2 )) }≤2∣x^2 −y^2 ∣ true since lhs≤0 and rhs≥0

bothsides0squaringallowedx2+y2+2xy∣⩽2(x2+y2)+2x2y2x2+2xyy22x2y2nowxyiseither<0or0(x+y)2(xy)2}2x2y2truesincelhs0andrhs0

Commented by greg_ed last updated on 20/Nov/20

thanks.  but, i need another way !

thanks.but,ineedanotherway!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com