Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 12682 by b.e.h.i.8.3.4.1.7@gmail.com last updated on 28/Apr/17

Answered by mrW1 last updated on 29/Apr/17

let u=x+y  let v=xy    (x+y)^2 =x^2 +y^2 +2xy=4+2xy  ⇒u^2 =4+2v   ...(i)    x^3 +y^3 =(x+y)(x^2 +y^2 −xy)=8  (x+y)(4−xy)=8  ⇒u(4−v)=8    ...(ii)    from (i):  v=(u^2 /2)−2  into (ii):  u(4−(u^2 /2)+2)=8  u(12−u^2 )=16  u^3 −12u+16=0  (u−2)(u−2)(u+4)=0  ⇒u=2 or −4  ⇒v=0 or 6    ⇒x+y=2  ⇒xy=0  ⇒x^2 +y^2 −2xy=4  ⇒(x−y)^2 =4  ⇒x−y=±2  ⇒x=2 or 0  ⇒y=0 or 2    ⇒x+y=−4  ⇒xy=6  ⇒x^2 +y^2 −2xy=4−12=−8  ⇒(x−y)^2 =−8  ⇒x−y=±2(√2)i  ⇒x=−2±(√2)i  ⇒y=−2∓(√2)i    so the solutions are:   ((x),(y) )= ((2),(0) ) or  ((0),(2) ) or  (((−2+(√2)i)),((−2−(√2)i)) ) or  (((−2−(√2)i)),((−2+(√2)i)) )

letu=x+yletv=xy(x+y)2=x2+y2+2xy=4+2xyu2=4+2v...(i)x3+y3=(x+y)(x2+y2xy)=8(x+y)(4xy)=8u(4v)=8...(ii)from(i):v=u222into(ii):u(4u22+2)=8u(12u2)=16u312u+16=0(u2)(u2)(u+4)=0u=2or4v=0or6x+y=2xy=0x2+y22xy=4(xy)2=4xy=±2x=2or0y=0or2x+y=4xy=6x2+y22xy=412=8(xy)2=8xy=±22ix=2±2iy=22isothesolutionsare:(xy)=(20)or(02)or(2+2i22i)or(22i2+2i)

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 29/Apr/17

thanks a lot dear mrW1.you are no.1.

thanksalotdearmrW1.youareno.1.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com