Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 12725 by b.e.h.i.8.3.4.1.7@gmail.com last updated on 29/Apr/17

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 29/Apr/17

in triangle: ABC,point  D located on  triangle plan,such that:  ∠ADB=∠BDC=∠CDA and:  DH∥AB ,DG∥BC ,DF∥AC.  1)find: ((DH)/(AB))+((DG)/(BC))+((DF)/(AC)) .  2)prove: DH+DG+DF<DA+DB+DC  3)(S_(ADG) /S_(DBH) )=?

intriangle:ABC,pointDlocatedontriangleplan,suchthat:ADB=BDC=CDAand:DHAB,DGBC,DFAC.1)find:DHAB+DGBC+DFAC.2)prove:DH+DG+DF<DA+DB+DC3)SADGSDBH=?

Commented by mrW1 last updated on 01/May/17

Commented by mrW1 last updated on 01/May/17

what do you mean in question 3?

whatdoyoumeaninquestion3?

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 01/May/17

hello dear mrW1.thank you so much  for solving this question.you are   number one in tinku tara.  about your communet:  S_(ADG) = area of triangle ADG and so.

hellodearmrW1.thankyousomuchforsolvingthisquestion.youarenumberoneintinkutara.aboutyourcommunet:SADG=areaoftriangleADGandso.

Answered by mrW1 last updated on 01/May/17

Question 1)    since ∡ADB=∡ADC=∡BDC  ⇒ ∡ADB=∡ADC=∡BDC=((360)/3)=120°  sin 120°=((√3)/2)  cos 120°=−(1/2)    let DA^(−) =a  let DB^(−) =b  let DC^(−) =c    AC^2 =a^2 +c^2 −2ac×cos ∡ADC=a^2 +c^2 +ac  ⇒AC=(√(a^2 +c^2 +ac))  similarily  ⇒AB=(√(a^2 +b^2 +ab))  ⇒BC=(√(b^2 +c^2 +bc))    in ΔBDC:  ((BC)/(sin 120°))=(b/(sin β))=(c/(sin (60−β)))    ...(i)    in ΔADC:  ((AC)/(sin 120°))=(a/(sin α))=(c/(sin (60−α)))    ...(ii)    from (i):  (c/b)sin β=sin (60−β)=sin 60 cos β−cos 60 sin β  (c/b)sin β=((√3)/2)cos β−(1/2) sin β  ⇒cos β=((2c+b)/((√3)b)) sin β  similarily from (ii):  ⇒cos α=((2c+a)/((√3)a)) sin α    sin (α+β)=sin α cos β+sin β cos α  =sin α ×((2c+b)/((√3)b)) sin β+sin β ×((2c+a)/((√3)a)) sin α  =(2/(√3))×((ab+bc+ca)/(ab))×sin α sin β    in ΔCDG:  ((DG)/(sin α))=((DC)/(sin ∠CGD))=(c/(sin (180−α−β)))=(c/(sin (α+β)))  ⇒DG=c×((sin α)/(sin (α+β)))=((c×sin α)/((2/(√3))×((ab+bc+ca)/(ab))×sin α sin β))  =((√3)/2)×(b/(sin β))×((ac)/(ab+bc+ca))    from (i) we have  (b/(sin β))=((BC)/(sin 120°))=((BC)/((√3)/2))  ⇒((√3)/2)×(b/(sin β))=BC    ⇒DG=BC×((ac)/(ab+bc+ca))  or  ((DG)/(BC))=((ac)/(ab+bc+ca))    similarily  ((DH)/(AB))=((bc)/(ab+bc+ca))  ((DF)/(AC))=((ab)/(ab+bc+ca))    ((DH)/(AB))+((DF)/(AC))+((DG)/(BC))=((bc+ab+ac)/(ab+bc+ca))=1

Question1)sinceADB=ADC=BDCADB=ADC=BDC=3603=120°sin120°=32cos120°=12letDA=aletDB=bletDC=cAC2=a2+c22ac×cosADC=a2+c2+acAC=a2+c2+acsimilarilyAB=a2+b2+abBC=b2+c2+bcinΔBDC:BCsin120°=bsinβ=csin(60β)...(i)inΔADC:ACsin120°=asinα=csin(60α)...(ii)from(i):cbsinβ=sin(60β)=sin60cosβcos60sinβcbsinβ=32cosβ12sinβcosβ=2c+b3bsinβsimilarilyfrom(ii):cosα=2c+a3asinαsin(α+β)=sinαcosβ+sinβcosα=sinα×2c+b3bsinβ+sinβ×2c+a3asinα=23×ab+bc+caab×sinαsinβinΔCDG:DGsinα=DCsinCGD=csin(180αβ)=csin(α+β)DG=c×sinαsin(α+β)=c×sinα23×ab+bc+caab×sinαsinβ=32×bsinβ×acab+bc+cafrom(i)wehavebsinβ=BCsin120°=BC3232×bsinβ=BCDG=BC×acab+bc+caorDGBC=acab+bc+casimilarilyDHAB=bcab+bc+caDFAC=abab+bc+caDHAB+DFAC+DGBC=bc+ab+acab+bc+ca=1

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 01/May/17

so beautiful .thanks a lot.

sobeautiful.thanksalot.

Answered by mrW1 last updated on 01/May/17

Question 2)    see above:  DG=((ac)/(ab+bc+ca))×BC  =((ac)/(ab+bc+ca))×(√(b^2 +c^2 +bc))  <((ac)/(ab+bc+ca))×(√(b^2 +c^2 +2bc))  =((ac(b+c))/(ab+bc+ca))  ⇒DG<((ac(b+c))/(ab+bc+ca))    similarily  DH<((bc(a+b))/(ab+bc+ca))  DF<((ab(c+a))/(ab+bc+ca))    DG+DH+DF<((ac(b+c)+bc(a+b)+ab(c+a))/(ab+bc+ca))  =((ac(a+b+c)+bc(a+b+c)+ab(c+a+b)−a^2 c−c^2 b−b^2 a)/(ab+bc+ca))  =(((ac+bc+ab)(a+b+c)−a^2 c−c^2 b−b^2 a)/(ab+bc+ca))  =a+b+c−((a^2 c+c^2 b+b^2 a)/(ab+bc+ca))  <a+b+c  =DA+DB+DC

Question2)seeabove:DG=acab+bc+ca×BC=acab+bc+ca×b2+c2+bc<acab+bc+ca×b2+c2+2bc=ac(b+c)ab+bc+caDG<ac(b+c)ab+bc+casimilarilyDH<bc(a+b)ab+bc+caDF<ab(c+a)ab+bc+caDG+DH+DF<ac(b+c)+bc(a+b)+ab(c+a)ab+bc+ca=ac(a+b+c)+bc(a+b+c)+ab(c+a+b)a2cc2bb2aab+bc+ca=(ac+bc+ab)(a+b+c)a2cc2bb2aab+bc+ca=a+b+ca2c+c2b+b2aab+bc+ca<a+b+c=DA+DB+DC

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 01/May/17

perfect and nice.thank you very much.

perfectandnice.thankyouverymuch.

Answered by mrW1 last updated on 01/May/17

Question 3)    ((GC)/(AC))=((DH)/(AB))=((bc)/(ab+bc+ca))    S_(ΔADC) =(1/2)×ac×sin 120°=((√3)/4)ac  S_(ΔGDC) =((GC)/(AC))×S_(ΔADC) =((bc)/(ab+bc+ca))×(((√3)ac)/4)  S_(ΔADG) =(1−((GC)/(AC)))×S_(ΔADC) =(1−((bc)/(ab+bc+ca)))×(((√3)ac)/4)=(((√3)a^2 c(b+c))/(4(ab+bc+ca)))    similarily  S_(ΔBDH) =((DF)/(AC))×S_(ΔBDC) =((ab)/(ab+bc+ca))×(((√3)bc)/4)=(((√3)ab^2 c)/(4(ab+bc+ca)))    ⇒(S_(ΔADG) /S_(ΔBDH) )=((a^2 c(b+c))/(ab^2 c))=((a(b+c))/b^2 )=(a/b)(1+(c/b))

Question3)GCAC=DHAB=bcab+bc+caSΔADC=12×ac×sin120°=34acSΔGDC=GCAC×SΔADC=bcab+bc+ca×3ac4SΔADG=(1GCAC)×SΔADC=(1bcab+bc+ca)×3ac4=3a2c(b+c)4(ab+bc+ca)similarilySΔBDH=DFAC×SΔBDC=abab+bc+ca×3bc4=3ab2c4(ab+bc+ca)SΔADGSΔBDH=a2c(b+c)ab2c=a(b+c)b2=ab(1+cb)

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 02/May/17

S_(BDG) =((√3)/4)b^2 .((ac)/(ab+bc+ac))  S_(ADF)  =((√3)/4)a^2 .((bc)/(ab+bc+ac))  S_(CDG) =((√3)/4)c^2 .((ab)/(ab+bc+ac))  (S_(ADF) /a^2 )+(S_(BDG) /b^2 )+(S_(CDG) /c^2 )=((√3)/4)  .  .........................................................  (S_(ADG) /(ac))=((√3)/4).((ba+ca)/(ab+bc+ac))  (S_(BDF) /(ba))=((√3)/4).((bc+ab)/(ab+bc+ac))  (S_(CDG) /(bc))=((√3)/4).((ac+bc)/(ab+bc+ac))  (S_(ADG) /(ac))+(S_(BDF) /(ab))+(S_(CDG) /(bc))=((√3)/2)  .  ........................................................  S_(ABC) =((√3)/4)(ab+bc+ac)   .

SBDG=34b2.acab+bc+acSADF=34a2.bcab+bc+acSCDG=34c2.abab+bc+acSADFa2+SBDGb2+SCDGc2=34..........................................................SADGac=34.ba+caab+bc+acSBDFba=34.bc+abab+bc+acSCDGbc=34.ac+bcab+bc+acSADGac+SBDFab+SCDGbc=32.........................................................SABC=34(ab+bc+ac).

Terms of Service

Privacy Policy

Contact: info@tinkutara.com