Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 13548 by b.e.h.i.8.3.4.1.7@gmail.com last updated on 20/May/17

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 22/May/17

in triangle ABC:  1)∡ABD=∡DBE=∡EBC  2)EH⊥AB, DG⊥BC  3)S_(ABC) =1  .......................  S_(DFE) =? (area of  ΔDEF)

intriangleABC:1)ABD=DBE=EBC2)EHAB,DGBC3)SABC=1.......................SDFE=?(areaofΔDEF)

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 20/May/17

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 20/May/17

special case: ∡ABC=90^° ,AB=BC

specialcase:ABC=90°,AB=BC

Commented by mrW1 last updated on 21/May/17

I don′t think (S_(DFE) /S_(ABC) )=constant.  According to the 3 conditions we  can not determine S_(DFE) .    See picture:  Both cases have the same conditions,  but S_(DFE)  is not the same.

IdontthinkSDFESABC=constant.Accordingtothe3conditionswecannotdetermineSDFE.Seepicture:Bothcaseshavethesameconditions,butSDFEisnotthesame.

Commented by mrW1 last updated on 21/May/17

Commented by mrW1 last updated on 21/May/17

There were a solution if the conditions  were that H and G are the midpoint  of AB and BC, D and E are the 1/3   points of AC.  In this case (S_(ΔDEF) /S_(ΔABC) )=constant=(1/(15))

TherewereasolutioniftheconditionswerethatHandGarethemidpointofABandBC,DandEarethe1/3pointsofAC.InthiscaseSΔDEFSΔABC=constant=115

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 21/May/17

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 21/May/17

in AB^Δ C^ : draw bisect of ∡B.   let :BD=d_b (bisect of ∡B)  S_(ABC) =S_(ABD) +S_(BDC)   (1/2)ac.sinB=(1/2)c.d_b .sin(B/2)+(1/2)a.d_b .sin(B/2)  ⇒d_b (a+c)sin(B/2)=2ac.sin(B/2).cos(B/2)  ⇒d_b =((2ac)/(a+c)).cos(B/2)

inABΔC:drawbisectofB.let:BD=db(bisectofB)SABC=SABD+SBDC12ac.sinB=12c.db.sinB2+12a.db.sinB2db(a+c)sinB2=2ac.sinB2.cosB2db=2aca+c.cosB2

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 21/May/17

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 22/May/17

in trianvle:AB^Δ C^ ,draw trisect of∡B.  now:∡ABE=∡EBF=∡FBC=((∡B)/3)  let:BE=d_1 ,BF=d_2   from the commenet above,in AB^Δ F,  BE is bisect of ∡ABF,so we have:  d_1 =((2ad_2 )/(a+d_2 ))cos(B/3),similarly:d_2 =((2cd_1 )/(c+d_1 ))cos(B/3)   { ((ad_1 +d_1 d_2 =2ad_2 .cos(B/3))),((cd_2 +d_1 d_2 =2cd_1 .cos(B/3))) :}from this system:   { ((d_1 =((ac)/(c+2a.cos(B/3)))(4cos^2 (B/3)−1))),((d_2 =((ac)/(a+2c.cos(B/3)))(4cos^2 (B/3)−1))) :}

intrianvle:ABΔC,drawtrisectofB.now:ABE=EBF=FBC=B3let:BE=d1,BF=d2fromthecommenetabove,inABFΔ,BEisbisectofABF,sowehave:d1=2ad2a+d2cosB3,similarly:d2=2cd1c+d1cosB3{ad1+d1d2=2ad2.cosB3cd2+d1d2=2cd1.cosB3fromthissystem:{d1=acc+2a.cosB3(4cos2B31)d2=aca+2c.cosB3(4cos2B31)

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 22/May/17

if ∡B=90,a=c,from the commonet   above ,we have:    ((B/3)=30°)  S_(ABC) =(1/2)ac=1⇒ac=2⇒a=c=(√2),b=2  4cos^2 (B/3)−1=4(((√3)/2))^2 −1=3−1=2  ⇒ { ((d_1 =((ac)/(c+2a.cos(B/3)))(4cos^2 (B/3)−1)=(((√(2.))(√2))/((√2)+2(√2).((√3)/2))).2=(√6)−(√2))),((d_1 =((2ac)/(c+a(√3))),d_2 =((2ac)/(a+c(√3))))) :}  ⇒d_1 =d_2 =(√6)−(√2)  AD^2 =AB^2 +d_1 ^2 −2AB.d_1 .cos(B/3)⇒  AD^2 =c^2 +((4a^2 c^2 )/((c+a(√3))^2 ))−2c((2ac)/(c+a(√3))).((√3)/2)=  =(c^2 /((c+a(√3))^2 ))(c^2 +3a^2 +2ac(√3)+4a^2 −6a^2 −2ac(√3))=  =((c^2 (c^2 +a^2 ))/((c+a(√3))^2 ))=((c^2 b^2 )/((c+a(√3))^2 ))⇒  ⇒ { ((AD=((bc)/(c+a(√3)))=(2/(1+(√3)))=(√3)−1)),((CE=((ba)/(a+c(√3)))=AD=(√3)−1.)) :}  DE=b−((bc)/(c+a(√3)))−((ba)/(a+c(√3)))=  =(b/((c+a(√3))(a+c(√3))))(ac+c^2 (√3)+a^2 (√3)+3ac−ac−c^2 (√3)−ac−a^2 (√3))=  ⇒DE=((2abc)/(4ac+b^2 (√3)))=((2.(√2).2.(√2))/(4(√2).(√2)+4(√3)))=(8/(4(2+(√3))))=2(2−(√3))=((√3)−1)^2   ⇒or:DE=AC−(AD+CE)=2−2((√3)−1)=  =4−2(√3)=((√3)−1)^2   DH=HE=((DE)/(√2))=((((√3)−1)^2 )/(√2))  ⇒S_(DHE) =(1/2)DH.HE=(1/2).((((√3)−1)^2 )/(√2)).((((√3)−1)^2 )/(√2))=  =(1/4)(4−2(√3))^2 =(2−(√3))^2   .■

ifB=90,a=c,fromthecommonetabove,wehave:(B3=30°)SABC=12ac=1ac=2a=c=2,b=24cos2B31=4(32)21=31=2{d1=acc+2a.cosB3(4cos2B31)=2.22+22.32.2=62d1=2acc+a3,d2=2aca+c3d1=d2=62AD2=AB2+d122AB.d1.cosB3AD2=c2+4a2c2(c+a3)22c2acc+a3.32==c2(c+a3)2(c2+3a2+2ac3+4a26a22ac3)==c2(c2+a2)(c+a3)2=c2b2(c+a3)2{AD=bcc+a3=21+3=31CE=baa+c3=AD=31.DE=bbcc+a3baa+c3==b(c+a3)(a+c3)(ac+c23+a23+3acacc23aca23)=DE=2abc4ac+b23=2.2.2.242.2+43=84(2+3)=2(23)=(31)2or:DE=AC(AD+CE)=22(31)==423=(31)2DH=HE=DE2=(31)22SDHE=12DH.HE=12.(31)22.(31)22==14(423)2=(23)2.

Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 25/May/17

S_(DFE) =p.q^2 .r^2   p=((cosA.cosC)/(2sinB))  q=((abc)/((a+2c.cos(B/3))(c+2a.cos(B/3))))=((abc)/(2(a+c)^2 .cos(B/3)+ac))  r=4cos^2 (B/3)−1=((sinB)/(sin(B/3)))

SDFE=p.q2.r2p=cosA.cosC2sinBq=abc(a+2c.cosB3)(c+2a.cosB3)=abc2(a+c)2.cosB3+acr=4cos2B31=sinBsinB3

Terms of Service

Privacy Policy

Contact: info@tinkutara.com