Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 13735 by b.e.h.i.8.3.4.1.7@gmail.com last updated on 22/May/17

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 22/May/17

∡ABC=90,S_(ABC) =1,AB=BC  ∡ABD=∡DBE=∡EBC  EG⊥AB, DF⊥BC  .........................................................  show that:(R_(ABC) /R_(DHE) )=2+(√3)  R_(ABC) =radius of circumscribed circle  of triangle AB^Δ C and so R_(DHE)  for DH^Δ E.

ABC=90,SABC=1,AB=BCABD=DBE=EBCEGAB,DFBC.........................................................showthat:RABCRDHE=2+3RABC=radiusofcircumscribedcircleoftriangleABCΔandsoRDHEforDHEΔ.

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 23/May/17

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 23/May/17

what about inscribed circels?  is there any ratio?

whataboutinscribedcircels?isthereanyratio?

Commented by ajfour last updated on 23/May/17

Commented by ajfour last updated on 23/May/17

let AB=BC=a  equation of AC:  x+y=a   .........     of BD:  y=(x/(√3))   .........     of BE:  y=(√3)x  for point D  x+(x/(√3))=a    ⇒  x_D =((a(√3))/((√3)+1))  for point E  x+x(√3)=a  ⇒  x_E =(a/((√3)+1))  x_D −x_E =((a((√3)−1))/((√3)+1))  R_(DHE) =((x_D −x_E )/(√2)) =((a((√3)−1))/((√2)((√3)+1)))   R_(ABC) =(a/(√2))  so,  (R_(ABC) /R_(DHE) )=(((√3)+1)/((√3)−1))=2+(√3)  •

letAB=BC=aequationofAC:x+y=a.........ofBD:y=x3.........ofBE:y=3xforpointDx+x3=axD=a33+1forpointEx+x3=axE=a3+1xDxE=a(31)3+1RDHE=xDxE2=a(31)2(3+1)RABC=a2so,RABCRDHE=3+131=2+3

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 25/May/17

thank you mr. ajfour.

thankyoumr.ajfour.

Answered by mrW1 last updated on 22/May/17

let AB=BC=a  ⇒AC=(√2)a  ((AD)/(sin 30))=((AB)/(sin (45+30)))  ⇒AD=((sin 30)/(sin 75))×a=(a/(2cos 15))=(a/(2(√((1+((√3)/2))/2))))=(a/(√(2+(√3))))  DE=(√2)a−((2a)/(√(2+(√3))))  (R_(DHE) /R_(ABC) )=((DE)/(AC))=1−(√(2/(2+(√3))))

letAB=BC=aAC=2aADsin30=ABsin(45+30)AD=sin30sin75×a=a2cos15=a21+322=a2+3DE=2a2a2+3RDHERABC=DEAC=122+3

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 23/May/17

1−(√(2/(2+(√3))))=1−(√((2(2−(√(3))))/1))=1−(√(4−2(√3)))=  1−(√(((√3)−1)^2 ))=1−((√3)−1)=2−(√3)=(1/(2+(√3))).

122+3=12(23)1=1423=1(31)2=1(31)=23=12+3.

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 25/May/17

thank you mrW1.

thankyoumrW1.

Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 23/May/17

S=(1/2)ac=2⇒ac=2 ⇒^(a=c)  a=c=(√2),b=2  R_(ABC) =((abc)/(4S))=(((√2).(√2).2)/(2×4))=(4/4)=1  ((AD)/(sin30))=((AB)/(sin(180−(30+45))))⇒((AD)/(1/2))=((√2)/(sin75))⇒  AD=(1/2)(√2)((((√6)−(√2))/1))=(√3)−1  DE=2−2AD=2−2((√3)−1)=4−2(√3)  DH=HE=((DE)/(√2))=((((√3)−1)^2 )/(√2))  S_(DHE) =(1/2)DH.HE=(1/2).((((√3)−1)^2 )/(√2)).((((√3)−1)^2 )/(√2))=  =((2(2−(√3)).2×(2−(√3)))/4)=(2−(√3))^2   R_(DHE) =((a^′ b^′ c^′ )/(4S^′ ))=((((((√3)−1)^2 )/(√2)).((((√3)−1)^2 )/(√2)).((√3)−1)^2 )/(4(2−(√3))^2 ))=  =((4(2−(√3))^3 )/(4(2−(√3))^2 ))=2−(√3)  ⇒(R_(ABC) /R_(DHE) )=(1/(2−(√3)))=2+(√3)  .■

S=12ac=2ac=2a=ca=c=2,b=2RABC=abc4S=2.2.22×4=44=1ADsin30=ABsin(180(30+45))AD12=2sin75AD=122(621)=31DE=22AD=22(31)=423DH=HE=DE2=(31)22SDHE=12DH.HE=12.(31)22.(31)22==2(23).2×(23)4=(23)2RDHE=abc4S=(31)22.(31)22.(31)24(23)2==4(23)34(23)2=23RABCRDHE=123=2+3.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com