Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 13835 by Tinkutara last updated on 24/May/17

Commented by Tinkutara last updated on 24/May/17

Answer given is 2nπ − ((3π)/4) < (A/2) < 2nπ − (π/4)

Answergivenis2nπ3π4<A2<2nππ4

Answered by ajfour last updated on 24/May/17

if A=(π/2)−2B, then   (A/2)=(π/4)−B  2sin ((π/4)−B)=−(√(1+cos 2B))−(√(1−cos 2B))  2sin ((π/4)−B)=−(√2)∣cos B∣−(√2)∣sin B∣∣  cos B−sin B+∣cos B∣+∣sin B∣=0  ⇒ sin B≥0 , cos B≤0  −(2n−1)π−(π/2)≤ B ≤−(2n−1)π  −(2n−1)π−(π/2)≤ (π/4)−(A/2) ≤−(2n−1)π  ⇒ (A/2)≤2nπ−π+(π/4)+(π/2)  and  (A/2)≥2nπ−π+(π/4)  2n𝛑−((3𝛑)/4)≤ (A/2) ≤ 2n𝛑−(𝛑/4) .

ifA=π22B,thenA2=π4B2sin(π4B)=1+cos2B1cos2B2sin(π4B)=2cosB2sinB∣∣cosBsinB+cosB+sinB∣=0sinB0,cosB0(2n1)ππ2B(2n1)π(2n1)ππ2π4A2(2n1)πA22nππ+π4+π2andA22nππ+π42nπ3π4A22nππ4.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com