Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 138485 by SLVR last updated on 14/Apr/21

Commented by SLVR last updated on 14/Apr/21

Good morning mr.W thanks for  your support .The above is also i  missed long ago..and i couldnot  retrive from the group.kindly help

Goodmorningmr.Wthanksforyoursupport.Theaboveisalsoimissedlongago..andicouldnotretrivefromthegroup.kindlyhelp

Answered by phanphuoc last updated on 14/Apr/21

u=arcxsinx   dv=1/(√(1−x+x^2 ))dx

u=arcxsinxdv=1/1x+x2dx

Answered by Ñï= last updated on 14/Apr/21

∫_0 ^1 ((sin^(−1) (√x))/( (√(1−x+x^2 ))))dx=∫_0 ^1 ((sin^(−1) (√(1−x)))/( (√(1−x+x^2 ))))dx=(1/2)∙(π/2)∫_0 ^1 (dx/( (√((x−(1/2))^2 +(3/4)))))  =(π/4)ln(x−(1/2)+(√(1−x+x^2 )))_0 ^1 =(π/4)ln 3  {sin^(−1) (√x)+sin^(−1) (√(1−x))=(π/2),∫(du/( (√(u^2 +a^2 ))))=ln∣u+(√(u^2 +a^2 ))∣+C}  ∫_0 ^1 ((sin^(−1) x)/( (√(1−x+x^2 ))))dx=(π/4)ln 3

01sin1x1x+x2dx=01sin11x1x+x2dx=12π201dx(x12)2+34=π4ln(x12+1x+x2)01=π4ln3{sin1x+sin11x=π2,duu2+a2=lnu+u2+a2+C}01sin1x1x+x2dx=π4ln3

Commented by SLVR last updated on 14/Apr/21

thanks sir... i am wrong writing  the question.

thankssir...iamwrongwritingthequestion.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com