Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 13977 by b.e.h.i.8.3.4.1.7@gmail.com last updated on 25/May/17

Commented by prakash jain last updated on 26/May/17

∫((3+x^2 )/(2+x^3 ))dx  ∫(3/((2^(1/3) )^3 +x^3 ))dx+∫(x^2 /(2+x^3 ))dx  ∫(x^2 /(2+x^3 ))dx=∫(du/(3(2+u)))    (x^3 =u)  =(1/3)ln (2+u)+C=(1/3)ln (2+x^3 )  −−−−−−  (x^3 +2)=(x+2^(1/3) )(x+2^(1/3) w)(x+2^(1/3) w^2 )  (1,w,w^2 ) are cube roots of unity.  for easier typing i will put 2^(1/3) =j  ∫((3dx)/((x+j)(x+jw)(x+jw^2 )))  =∫(A/(x+j))dx+∫(B/(x+jw))dx+∫(C/(x+jw^2 ))dx  perform partial fraction and  integrate.

3+x22+x3dx3(21/3)3+x3dx+x22+x3dxx22+x3dx=du3(2+u)(x3=u)=13ln(2+u)+C=13ln(2+x3)(x3+2)=(x+21/3)(x+21/3w)(x+21/3w2)(1,w,w2)arecuberootsofunity.foreasiertypingiwillput21/3=j3dx(x+j)(x+jw)(x+jw2)=Ax+jdx+Bx+jwdx+Cx+jw2dxperformpartialfractionandintegrate.

Answered by ajfour last updated on 26/May/17

 I=∫_0 ^(  1) (((x^2 +3)/(x^3 +2)))dx    let a^3 =2  x^3 +2=(x+a)(x^2 −ax+a^2 )  for x=1,  (1+a)(1−a+a^2 )=3  ((x^2 +3)/(x^3 +2))=(A/(x+a))+((Bx+C)/(x^2 −ax+a^2 ))  A=(1/3)+(a/2),  B=(2/3)−(a/2), C=(2/a)−(a/3)  I=Aln (1+(1/a))+(B/2)∫_0 ^(  1) (((2x−a)dx)/(x^2 −ax+a^2 ))               +(C+((aB)/2))∫_0 ^(  1) (dx/((x−(a/2))^2 +(((a(√3))/2))^2 ))   I =Aln (1+(1/a))+(B/2)ln (((1−a+a^2 )/a^2 ))   +(C+((aB)/2))(2/(a(√3)))[tan^(−1) (((a^2 −1)/(√3)))+(π/6)]    substiting for A,B, C and  utilizing the fact  a^2 =(2/a),  that  a^2 −a+1=(3/(a+1))  we have  I=((3a)/4)ln (1+a)−((a/4)+(2/3))ln a+    ((1/3)−(a/4))ln 3+((a(√3))/2)[tan^(−1) (((a^2 −1)/(√3)))+(π/6)]  I=((3a)/4)ln (1+(1/a))+((a(√3))/2)tan^(−1) (((√3)/(2a−1)))       −(a/4)ln (3a)+(2/3)ln (((√3)/a)) .

I=01(x2+3x3+2)dxleta3=2x3+2=(x+a)(x2ax+a2)forx=1,(1+a)(1a+a2)=3x2+3x3+2=Ax+a+Bx+Cx2ax+a2A=13+a2,B=23a2,C=2aa3I=Aln(1+1a)+B201(2xa)dxx2ax+a2+(C+aB2)01dx(xa2)2+(a32)2I=Aln(1+1a)+B2ln(1a+a2a2)+(C+aB2)2a3[tan1(a213)+π6]substitingforA,B,Candutilizingthefacta2=2a,thata2a+1=3a+1wehaveI=3a4ln(1+a)(a4+23)lna+(13a4)ln3+a32[tan1(a213)+π6]I=3a4ln(1+1a)+a32tan1(32a1)a4ln(3a)+23ln(3a).

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 26/May/17

thank you so much dear mr ajfour.

thankyousomuchdearmrajfour.

Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 26/May/17

A=(1/(2)^(1/3) )⇒t=Ax  (x/(2)^(1/3) )=t⇒(x/(√3))=((t(2)^(1/3) )/(√3))=mt,m=((2)^(1/3) /(√3)),dx=(2)^(1/3) dt=m(√3)dt  I=∫((3(1+((x/(√3)))^2 ))/(2(1+((x/(2)^(1/3) ))^3 )))dx=((3m(√3))/2)∫((1+mt^2 )/(1+t^3 ))dt  =((3m(√3))/2)[∫(dt/(1+t^3 ))+m∫((t^2 dt)/(1+t^3 ))]=A[I_1 +mI_2 ]  1)I_2 =∫((t^2 dt)/(1+t^3 ))=(1/3)ln(1+t^3 )+C_2   2)I_1 =∫(dt/(1+t^3 ))=?  (1/(1+t^3 ))=(a/(1+t))+((bx+c)/(1−t+t^2 )) { ((t=0⇒1=a+c)),((t=1⇒(1/2)=(a/2)+b+c)) :}  t=−1⇒(1/3)=a+0⇒(a=(1/3),c=(2/3),b=((−1)/3))  ⇒(1/(1+t^3 ))=(1/(3(1+t)))+((−t+2)/(3(1−t+t^2 )))  ⇒I_1 =(1/3)∫((1/(1+t))+((−t+2)/(t^2 −t+1)))dt=  =(1/3)∫((1/(1+t)))dt−(1/6)∫(((2t−1)−3)/(t^2 −t+1))dt=  =(1/3)∫(dt/(1+t))−(1/6)∫(( 2t−1)/(t^2 −t+1))dt+((√3)/4)∫(dt/((((2t−1)/(√3)))^2 +1))=  =(1/3)ln(1+t)−(1/6)ln(1−t+t^2 )+((√3)/4)tg^(−1) (((2t−1)/(√3)))+C_1   I=((3(2)^(1/3) )/2)[(1/3)ln(1+t)−(1/6)ln(1−t+t^2 )+↓  +((√3)/4)tg^(−1) (((2t−1)/(√3)))+((2)^(1/3) /(√3)).(1/3)ln(1+t^3 )]+C  =(1/(8A))[4ln(1+Ax)−2ln(1−Ax+A^2 x^2 )+  +3(√3)tg^(−1) (((2Ax−1)/(√3)))+((4(√3))/(3A))ln(1+A^3 x^3 )]+C.  F(1)=((2)^(1/3) /8)[4ln(1+(1/(2)^(1/3) ))−2ln(1−(1/(2)^(1/3) )+(1/(4)^(1/3) ))+  +3(√3)tg^(−1) ((((4)^(1/3) −1)/(√3)))+((4(2)^(1/3) )/(√3))ln(3/2)]  F(0)=3(√3)tg^(−1) (−(1/(√3)))=−((π(√3))/2) .  I=F(1)−F(0)=F(1)+((π(√3))/2)  .

A=123t=Axx23=tx3=t233=mt,m=233,dx=23dt=m3dtI=3(1+(x3)2)2(1+(x23)3)dx=3m321+mt21+t3dt=3m32[dt1+t3+mt2dt1+t3]=A[I1+mI2]1)I2=t2dt1+t3=13ln(1+t3)+C22)I1=dt1+t3=?11+t3=a1+t+bx+c1t+t2{t=01=a+ct=112=a2+b+ct=113=a+0(a=13,c=23,b=13)11+t3=13(1+t)+t+23(1t+t2)I1=13(11+t+t+2t2t+1)dt==13(11+t)dt16(2t1)3t2t+1dt==13dt1+t162t1t2t+1dt+34dt(2t13)2+1==13ln(1+t)16ln(1t+t2)+34tg1(2t13)+C1I=3232[13ln(1+t)16ln(1t+t2)++34tg1(2t13)+233.13ln(1+t3)]+C=18A[4ln(1+Ax)2ln(1Ax+A2x2)++33tg1(2Ax13)+433Aln(1+A3x3)]+C.F(1)=238[4ln(1+123)2ln(1123+143)++33tg1(4313)+4233ln32]F(0)=33tg1(13)=π32.I=F(1)F(0)=F(1)+π32.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com