Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 140447 by 676597498 last updated on 07/May/21

Answered by EDWIN88 last updated on 07/May/21

L+M=∫_0 ^(π/2) cos^2 x sin^2 x(cos^2 x+sin^2 x)dx  L+M = ∫_0 ^(π/2) cos^2 x sin^2 x dx                = ∫_0 ^(π/2) cos^2 x−cos^4 x dx               = ∫_0 ^(π/2) (((1+cos 2x)/2))−(((1+cos 2x)/2))^2 dx               = [ ((x+(1/2)sin 2x)/2) ]_0 ^(π/2) −∫_0 ^(π/2) (((1+2cos 2x+((1+cos 4x)/2))/4))dx   = ((π/4))−∫_0 ^(π/2)  ((3+4cos 2x+cos 4x)/8) dx   = (π/4)− [ ((3x+2sin 2x+(1/4)sin 4x)/8) ]_0 ^(π/2)    = (π/4)−((3π)/(16)) = (π/(16)).

L+M=π/20cos2xsin2x(cos2x+sin2x)dxL+M=π/20cos2xsin2xdx=π/20cos2xcos4xdx=π/20(1+cos2x2)(1+cos2x2)2dx=[x+12sin2x2]0π/2π/20(1+2cos2x+1+cos4x24)dx=(π4)π/203+4cos2x+cos4x8dx=π4[3x+2sin2x+14sin4x8]0π/2=π43π16=π16.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com