Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 14077 by Tinkutara last updated on 27/May/17

Answered by ajfour last updated on 28/May/17

let (π/4)cot θ=α  and  (π/4)tan θ=β    then  sin α=cos β=f  (say)  β=2pπ±cos^(−1) f  ;  p ∈ Z      ....(a)  α=mπ+(−1)^m sin^(−1) f  ; m ∈ Z ..(b)  α+β=(π/4)(cot θ+tan θ)  ⇒   α+β=(π/(2sin 2θ))        ......(i)  α−β=(π/4)(cot θ−tan θ)  ⇒   α−β=(π/(2tan 2θ))       .......(ii)      comparing (b)+(a) with (i):  (π/(2sin 2θ))=(2p+m)π±cos^(−1) f                 +(−1)^m sin^(−1) f      ...(I)  comparing (b)−(a) with (ii):  (π/(2tan 2θ))=(m−2p)π+(−1)^m sin^(−1) f                   ∓cos^(−1) f               ...(II)    f is to be eliminated , four cases  arise from  (I) & (II):    In eqn (I) let m is ′even′ and    let us first use +cos^(−1) f ..then  (π/(2sin 2θ))=2nπ+(π/2)  ⇒  (1/(sin 2θ))=4n+1  ⇒ sin 2θ=(1/(4n+1))  ⇒ 2θ=kπ+(−1)^k sin^(−1) ((1/(4n+1)))   or 𝛉=((k𝛑)/2)+(((−1)^n )/2)sin^(−1) ((1/(4n+1)))  In ean (II) let m is ′even′ and  let us use first +cos^(−1) f ...then  (π/(2tan 2θ))=−2nπ+(π/2)  (1/(tan 2θ))=−4n+1  ⇒ tan 2θ=((−1)/(4n−1))  2θ=kπ+tan^(−1) (((−1)/(4n−1)))  or  𝛉=((k𝛑)/2)+(1/2)tan^(−1) (((−1)/(4n−1)))   in such a way two more  solutions are possible ;(are not  in your book, as you indicated).

letπ4cotθ=αandπ4tanθ=βthensinα=cosβ=f(say)β=2pπ±cos1f;pZ....(a)α=mπ+(1)msin1f;mZ..(b)α+β=π4(cotθ+tanθ)α+β=π2sin2θ......(i)αβ=π4(cotθtanθ)αβ=π2tan2θ.......(ii)comparing(b)+(a)with(i):π2sin2θ=(2p+m)π±cos1f+(1)msin1f...(I)comparing(b)(a)with(ii):π2tan2θ=(m2p)π+(1)msin1fcos1f...(II)fistobeeliminated,fourcasesarisefrom(I)&(II):Ineqn(I)letmisevenandletusfirstuse+cos1f..thenπ2sin2θ=2nπ+π21sin2θ=4n+1sin2θ=14n+12θ=kπ+(1)ksin1(14n+1)orθ=kπ2+(1)n2sin1(14n+1)Inean(II)letmisevenandletususefirst+cos1f...thenπ2tan2θ=2nπ+π21tan2θ=4n+1tan2θ=14n12θ=kπ+tan1(14n1)orθ=kπ2+12tan1(14n1)insuchawaytwomoresolutionsarepossible;(arenotinyourbook,asyouindicated).

Answered by Tinkutara last updated on 27/Jul/17

cos ((π/4) tan θ) = cos ((π/2) − (π/4) cot θ)  (π/4) tan θ = 2nπ ± ((π/2) − (π/4) cot θ)  Taking positive sign,  (1/4)(tan θ + cot θ) = 2n + (1/2)  ((1 + tan^2  θ)/(2 tan θ)) = 4n + 1 = cosec 2θ  2θ = nπ + (−1)^n cosec^(−1) (4n + 1)  θ = ((nπ)/2) + (((−1)^n )/2) sin^(−1) ((1/(4n + 1)))  Now taking negative sign,  (1/4)(tan θ − cot θ) = 2n − (1/2)  ((tan^2  θ − 1)/(2 tan θ)) = 4n − 1 = − cot 2θ  2θ = nπ + cot^(−1) [−(4n − 1)]  θ = ((nπ)/2) + (1/2) tan^(−1) (((−1)/(4n − 1)))

cos(π4tanθ)=cos(π2π4cotθ)π4tanθ=2nπ±(π2π4cotθ)Takingpositivesign,14(tanθ+cotθ)=2n+121+tan2θ2tanθ=4n+1=cosec2θ2θ=nπ+(1)ncosec1(4n+1)θ=nπ2+(1)n2sin1(14n+1)Nowtakingnegativesign,14(tanθcotθ)=2n12tan2θ12tanθ=4n1=cot2θ2θ=nπ+cot1[(4n1)]θ=nπ2+12tan1(14n1)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com