All Questions Topic List
Trigonometry Questions
Previous in All Question Next in All Question
Previous in Trigonometry Next in Trigonometry
Question Number 14077 by Tinkutara last updated on 27/May/17
Answered by ajfour last updated on 28/May/17
letπ4cotθ=αandπ4tanθ=βthensinα=cosβ=f(say)β=2pπ±cos−1f;p∈Z....(a)α=mπ+(−1)msin−1f;m∈Z..(b)α+β=π4(cotθ+tanθ)⇒α+β=π2sin2θ......(i)α−β=π4(cotθ−tanθ)⇒α−β=π2tan2θ.......(ii)comparing(b)+(a)with(i):π2sin2θ=(2p+m)π±cos−1f+(−1)msin−1f...(I)comparing(b)−(a)with(ii):π2tan2θ=(m−2p)π+(−1)msin−1f∓cos−1f...(II)fistobeeliminated,fourcasesarisefrom(I)&(II):Ineqn(I)letmis′even′andletusfirstuse+cos−1f..thenπ2sin2θ=2nπ+π2⇒1sin2θ=4n+1⇒sin2θ=14n+1⇒2θ=kπ+(−1)ksin−1(14n+1)orθ=kπ2+(−1)n2sin−1(14n+1)Inean(II)letmis′even′andletususefirst+cos−1f...thenπ2tan2θ=−2nπ+π21tan2θ=−4n+1⇒tan2θ=−14n−12θ=kπ+tan−1(−14n−1)orθ=kπ2+12tan−1(−14n−1)insuchawaytwomoresolutionsarepossible;(arenotinyourbook,asyouindicated).
Answered by Tinkutara last updated on 27/Jul/17
cos(π4tanθ)=cos(π2−π4cotθ)π4tanθ=2nπ±(π2−π4cotθ)Takingpositivesign,14(tanθ+cotθ)=2n+121+tan2θ2tanθ=4n+1=cosec2θ2θ=nπ+(−1)ncosec−1(4n+1)θ=nπ2+(−1)n2sin−1(14n+1)Nowtakingnegativesign,14(tanθ−cotθ)=2n−12tan2θ−12tanθ=4n−1=−cot2θ2θ=nπ+cot−1[−(4n−1)]θ=nπ2+12tan−1(−14n−1)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com