Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 142717 by mohammad17 last updated on 04/Jun/21

Commented by mohammad17 last updated on 04/Jun/21

it is very hard how can solve this

itisveryhardhowcansolvethis

Answered by Ar Brandon last updated on 04/Jun/21

I=∫((2x+3)/((3x+4)(√(x^2 +2x+4))))dx=(2/3)∫((3x+(9/2))/((3x+4)(√(x^2 +2x+4))))dx    =(2/3)∫(dx/( (√(x^2 +2x+4))))+(1/3)∫(dx/((3x+4)(√(x^2 +2x+4))))  J=(2/3)∫(dx/( (√((x+1)^2 +3))))=(2/3)argsh(((x+1)/( (√3))))=(2/3)ln∣(x+1)+(√(x^2 +2x+4))∣  K=(1/3)∫(dx/((3x+4)(√(x^2 +2x+4)))), u=(1/(3x+4)), x=(1/(3u))−(4/3)       =−(1/3)∙(1/3)∫(u/( (√((((1/(3u))−(4/3))^2 +2((1/(3u))−(4/3))+4))))∙(du/u^2 )      =−(1/9)∫(du/( u(√((1/(9u^2 ))−(8/(9u))+((16)/9)+(2/(3u))−(8/3)+4))))      =∓(1/9)∫(du/( (√((1/9)−((2u)/9)+((28u^2 )/9)))))=∓(1/9)∙(3/( (√(28))))∫(du/( (√(u^2 −(u/(14))+(1/(28))))))      =∓(1/(6(√7)))∫(du/( (√((u−(1/(28)))^2 +((27)/(784))))))=∓(1/(6(√7)))∙argsh(((28u−1)/( (√(27)))))      =∓(1/(6(√7)))ln∣(u−(1/(28)))+(√(u^2 −(u/(14))+(1/(28))))∣      =∓(1/(6(√7)))ln∣((1/(3x+4))−(1/(28)))+(√((1/((3x+4)^2 ))−(1/(14(3x+4)))+(1/(28))))∣+C    I=J+K

I=2x+3(3x+4)x2+2x+4dx=233x+92(3x+4)x2+2x+4dx=23dxx2+2x+4+13dx(3x+4)x2+2x+4J=23dx(x+1)2+3=23argsh(x+13)=23ln(x+1)+x2+2x+4K=13dx(3x+4)x2+2x+4,u=13x+4,x=13u43=1313u((13u43)2+2(13u43)+4duu2=19duu19u289u+169+23u83+4=19du192u9+28u29=19328duu2u14+128=167du(u128)2+27784=167argsh(28u127)=167ln(u128)+u2u14+128=167ln(13x+4128)+1(3x+4)2114(3x+4)+128+CI=J+K

Answered by MJS_new last updated on 04/Jun/21

((2x+3)/(3x+4))=(2/3)+(1/(3(3x+4)))  ∫((2x+3)/((3x+4)(√(x^2 +2x+4))))dx=  =(2/3)∫(dx/( (√(x^2 +2x+4))))+(1/3)∫(dx/((3x+4)(√(x^2 +2x+4))))=       [t=x+1 → dx=dt]  =(2/3)∫(dt/( (√(t^2 +3))))+(1/3)∫(dt/((3t+1)(√(t^2 +3))))=       [u=((t+(√(t^2 +3)))/( (√3))) → dt=((√(3(t^2 +3)))/(t+(√(t^2 +3))))du=((√(t^2 +3))/u)du]            (usually you would now substitute              t=(√3)sinh u but I don′t like dealing              with hyperbolic functions)  =(2/3)∫(du/u)+((2(√3))/(27))∫(du/(u^2 +((2(√3))/9)u−1))=       [v=u+((√3)/9) → du=dv]  =(2/3)ln u +((2(√3))/(27))∫(dv/(v^2 −((28)/(27))))=       [w=((3(√(21)))/(14))v → dv=((2(√(21)))/9)dw]  =(2/3)ln u +((√7)/(21))∫(dw/(w^2 −1))=  =(2/3)ln u +((√7)/(42))ln ((w−1)/(w+1)) =  ...  =(2/3)ln (x+1+(√(x^2 +2x+4))) +((√7)/(42))ln ∣((x−8+2(√(7(x^2 +2x+4))))/(3x+4))∣ +C

2x+33x+4=23+13(3x+4)2x+3(3x+4)x2+2x+4dx==23dxx2+2x+4+13dx(3x+4)x2+2x+4=[t=x+1dx=dt]=23dtt2+3+13dt(3t+1)t2+3=[u=t+t2+33dt=3(t2+3)t+t2+3du=t2+3udu](usuallyyouwouldnowsubstitutet=3sinhubutIdontlikedealingwithhyperbolicfunctions)=23duu+2327duu2+239u1=[v=u+39du=dv]=23lnu+2327dvv22827=[w=32114vdv=2219dw]=23lnu+721dww21==23lnu+742lnw1w+1=...=23ln(x+1+x2+2x+4)+742lnx8+27(x2+2x+4)3x+4+C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com