All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 142717 by mohammad17 last updated on 04/Jun/21
Commented by mohammad17 last updated on 04/Jun/21
itisveryhardhowcansolvethis
Answered by Ar Brandon last updated on 04/Jun/21
I=∫2x+3(3x+4)x2+2x+4dx=23∫3x+92(3x+4)x2+2x+4dx=23∫dxx2+2x+4+13∫dx(3x+4)x2+2x+4J=23∫dx(x+1)2+3=23argsh(x+13)=23ln∣(x+1)+x2+2x+4∣K=13∫dx(3x+4)x2+2x+4,u=13x+4,x=13u−43=−13⋅13∫u((13u−43)2+2(13u−43)+4⋅duu2=−19∫duu19u2−89u+169+23u−83+4=∓19∫du19−2u9+28u29=∓19⋅328∫duu2−u14+128=∓167∫du(u−128)2+27784=∓167⋅argsh(28u−127)=∓167ln∣(u−128)+u2−u14+128∣=∓167ln∣(13x+4−128)+1(3x+4)2−114(3x+4)+128∣+CI=J+K
Answered by MJS_new last updated on 04/Jun/21
2x+33x+4=23+13(3x+4)∫2x+3(3x+4)x2+2x+4dx==23∫dxx2+2x+4+13∫dx(3x+4)x2+2x+4=[t=x+1→dx=dt]=23∫dtt2+3+13∫dt(3t+1)t2+3=[u=t+t2+33→dt=3(t2+3)t+t2+3du=t2+3udu](usuallyyouwouldnowsubstitutet=3sinhubutIdon′tlikedealingwithhyperbolicfunctions)=23∫duu+2327∫duu2+239u−1=[v=u+39→du=dv]=23lnu+2327∫dvv2−2827=[w=32114v→dv=2219dw]=23lnu+721∫dww2−1==23lnu+742lnw−1w+1=...=23ln(x+1+x2+2x+4)+742ln∣x−8+27(x2+2x+4)3x+4∣+C
Terms of Service
Privacy Policy
Contact: info@tinkutara.com