All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 145609 by Khalmohmmad last updated on 06/Jul/21
Commented by imjagoll last updated on 06/Jul/21
letg(x)=f−1(x)⇒(g∙f)(x)=x⇒f′(x).g′(f(x))=1⇒g′(f(x))=1f′(x)=18x3+12x2+8⇒[f−1(f(x))]′=18x3+12x2+8f(x)=−3⇒2x4+4x3+8x+7=−3⇒2x4+4x3+8x+10=0⇒x4+2x3+4x+5=0⇒(x+1)(x3+x2−x+5)=0⇒x=−1thus[f−1(−3)]′=18(−1)+12(1)+8=112
Answered by gsk2684 last updated on 06/Jul/21
f(x)=2x4+4x3+8x+7f(x)=−3⇒2x4+4x3+8x+10=0⇒2(x+1)(x3+x2−x+5)=0f−1(−3)=−1andf∣(x)=8x3+12x2+8f(f−1(x))=xf(f−1(x))(f−1(x))=1(f−1(x))=1f(f−1(x))(f−1(−3))=1f(f−1(−3))=1f(−1)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com