Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 145671 by mathlove last updated on 07/Jul/21

Commented by mathlove last updated on 07/Jul/21

pleas help me

pleashelpme

Answered by imjagoll last updated on 07/Jul/21

(11) ∫ ((√(x^2 −9))/((x^2 +3x)(x−3))) dx    = ∫ (((√(x+3)) (√(x−3)))/(x((√(x+3)))^2  ((√(x−3)))^2 )) dx  = ∫ (dx/(x (√(x^2 −9))))   let x = 3sec t ⇒dx=3sec t tan t dt  I=∫ ((3sec t tan t dt)/(3sec t (√(9tan^2 t))))  I=∫(1/3) dt = (1/3)arcsec ((x/3))+c

(11)x29(x2+3x)(x3)dx=x+3x3x(x+3)2(x3)2dx=dxxx29letx=3sectdx=3secttantdtI=3secttantdt3sect9tan2tI=13dt=13arcsec(x3)+c

Commented by mathlove last updated on 07/Jul/21

and ohter

andohter

Answered by puissant last updated on 07/Jul/21

16)  t=x^2 ⇒ dt=2xdx ⇒ dx=(dt/(2x))  I=∫(x^3 /((x^2 +1)^3 ))×(dt/(2x)) = (1/2)∫(x^2 /((x^2 +1)^3 ))dt  =(1/2)∫(t/((t+1)^3 ))dt=(1/2)∫(1/((t+1)^2 ))dt−(1/2)∫(1/((t+1)^3 ))dt  ⇒I=−(1/(2(t+1)))+(1/(4(t+1)^2 ))+C  I=(1/(4(x^2 +1)^2 ))−(1/(2(x^2 +1)))+C..

16)t=x2dt=2xdxdx=dt2xI=x3(x2+1)3×dt2x=12x2(x2+1)3dt=12t(t+1)3dt=121(t+1)2dt121(t+1)3dtI=12(t+1)+14(t+1)2+CI=14(x2+1)212(x2+1)+C..

Commented by mathlove last updated on 07/Jul/21

and other

andother

Answered by iloveisrael last updated on 07/Jul/21

(9) ∫ ((cos 3u)/( (4+4sin 3u+sin^2 3u)^2 )) du  =∫ ((cos 3u)/((2+sin 3u)^2 )) du  =(1/3)∫ ((d(2+sin 3u))/((2+sin 3u)^2 ))   =−(1/(3(2+sin 3u))) + c

(9)cos3u(4+4sin3u+sin23u)2du=cos3u(2+sin3u)2du=13d(2+sin3u)(2+sin3u)2=13(2+sin3u)+c

Commented by mathlove last updated on 08/Jul/21

thanks sir  and other

thankssirandother

Answered by bobhans last updated on 07/Jul/21

(5)∫ ((e^x +e^(2x) )/( (√(e^x +1)))) dx = ∫ ((e^x (e^x +1))/( (√(e^x +1)))) dx  =∫e^x  (√(1+e^x )) dx = ∫(√(1+e^x )) d(1+e^x )  = (2/3) (√((1+e^x )^3 )) + c

(5)ex+e2xex+1dx=ex(ex+1)ex+1dx=ex1+exdx=1+exd(1+ex)=23(1+ex)3+c

Answered by bobhans last updated on 07/Jul/21

(15)∫ (((3+x)^2 −6x)/( (√((9+x^2 )^5 )))) dx = ∫ ((x^2 +9)/( (√((x^2 +9)^5 )))) dx  = ∫ (dx/( (√((x^2 +9)^3 )))) ; x=3tan u ; sin u=(x/( (√(9+x^2 ))))  =∫ ((3sec^2 u)/( (√((9sec^2 u)^3 )))) = (1/9)∫ (du/(sec u))  =(1/9)∫ cos u du = (1/9)sin u+c = (x/(9(√(9+x^2 )))) + c

(15)(3+x)26x(9+x2)5dx=x2+9(x2+9)5dx=dx(x2+9)3;x=3tanu;sinu=x9+x2=3sec2u(9sec2u)3=19dusecu=19cosudu=19sinu+c=x99+x2+c

Answered by puissant last updated on 07/Jul/21

8) ∫(((e^2 cos(x))(e^(sin(x)) ))/(e^(lne) +ln1))dx  =∫((cos(x)e^(2+sin(x)) )/e)dx  =(1/e)∫cos(x)e^(2+sin(x)) dx  =(1/e)e^(2+sin(x)) +c...

8)(e2cos(x))(esin(x))elne+ln1dx=cos(x)e2+sin(x)edx=1ecos(x)e2+sin(x)dx=1ee2+sin(x)+c...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com