Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 145715 by Mrsof last updated on 07/Jul/21

Commented by Mrsof last updated on 07/Jul/21

????

????

Answered by Dwaipayan Shikari last updated on 07/Jul/21

1)∫_(−∞) ^∞ (1/(x^4 +4))    dx   x=(√2)u  =(1/( 4(√2)))∫_0 ^∞ (1/(u^4 +1))du=(1/( 4(√2))).(π/(sin((π/4))))=(π/4)

1)1x4+4dxx=2u=14201u4+1du=142.πsin(π4)=π4

Answered by Dwaipayan Shikari last updated on 07/Jul/21

∫_(−∞) ^∞ (1/((x^2 +1)))−(1/((x^2 +1)^2 ))dx    x^2 =u  =π−∫_0 ^∞ (u^(−1/2) /((u+1)^2 ))du    =π−B((1/2),(3/2))=π−((Γ((1/2))Γ((3/2)))/(Γ(2))) =π−(π/2)=(π/2)

1(x2+1)1(x2+1)2dxx2=u=π0u1/2(u+1)2du=πB(12,32)=πΓ(12)Γ(32)Γ(2)=ππ2=π2

Answered by mathmax by abdo last updated on 07/Jul/21

2)∫_(−∞) ^(+∞)  (x^2 /((x^2  +1)^2 ))dx =∫_(−∞) ^(+∞)  ((x^2  +1−1)/((x^2  +1)^2 ))dx=∫_(−∞) ^(+∞)  (dx/(x^2 +1))−∫_(−∞) ^(+∞)  (dx/((x^2  +1)^2 ))  ∫_(−∞) ^(+∞)  (dx/(x^2  +1))=[arctanx]_(−∞) ^(+∞)  =π  ∫_(−∞) ^(+∞)  (dx/((1+x^2 )^2 ))=_(x=tanθ)   ∫_(−(π/2)) ^(π/2)  (((1+tan^2 θ))/((1+tan^2 θ)^2 ))dθ=∫_(−(π/2)) ^(π/2)  (dθ/(1+tan^2 θ))  =2∫_0 ^(π/2) cos^2 θ dθ =∫_0 ^(π/2)  (1+cos(2θ))dθ =(π/2) +[(1/2)sin(2θ)]_0 ^(π/2)  =(π/2)  ⇒∫_(−∞) ^(+∞)  (x^2 /((x^2  +1)^2 ))=π−(π/2)=(π/2)

2)+x2(x2+1)2dx=+x2+11(x2+1)2dx=+dxx2+1+dx(x2+1)2+dxx2+1=[arctanx]+=π+dx(1+x2)2=x=tanθπ2π2(1+tan2θ)(1+tan2θ)2dθ=π2π2dθ1+tan2θ=20π2cos2θdθ=0π2(1+cos(2θ))dθ=π2+[12sin(2θ)]0π2=π2+x2(x2+1)2=ππ2=π2

Answered by mathmax by abdo last updated on 07/Jul/21

1)Υ=∫_(−∞) ^(+∞)  (dx/(x^4  +4)) ⇒Ψ=_(x=(√2)t)   ∫_(−∞) ^(+∞)  (((√2)dt)/(4(1+t^4 )))  =((√2)/4)∫_(−∞) ^(+∞)  (dt/(t^4  +1)) let ϕ(z)=(1/(z^4  +1)) ⇒ϕ(z)=(1/((z^2 −i)(z^2 +i)))  =(1/((z−e^((iπ)/4) )(z+e^((iπ)/4) )(z−e^(−((iπ)/4)) )(z+e^((iπ)/4) ))) so the poles are +^− e^((iπ)/4)  and +^− e^(−((iπ)/4))   ∫_R ϕ(z)dz=2iπ{Res(ϕ,e^((iπ)/4) ) +Res(ϕ,−e^(−((iπ)/4)) )}  Res(ϕ,e^((iπ)/4) )=(1/(2e^((iπ)/4) (2i)))=(1/(4i))e^(−((iπ)/4))   Res(ϕ,−e^(−((iπ)/4)) )=(1/((−2e^(−((iπ)/4)) )(−2i)))=(1/(4i))e^((iπ)/4)  ⇒  ∫_R ϕ(z)dz=2iπ{(1/(4i))e^(−((iπ)/4))  +(1/(4i))e^((iπ)/4) }=(π/2)(2cos((π/4)))=(π/( (√2))) ⇒  Ψ=((√2)/4)×(π/( (√2)))⇒Ψ=(π/4)

1)Υ=+dxx4+4Ψ=x=2t+2dt4(1+t4)=24+dtt4+1letφ(z)=1z4+1φ(z)=1(z2i)(z2+i)=1(zeiπ4)(z+eiπ4)(zeiπ4)(z+eiπ4)sothepolesare+eiπ4and+eiπ4Rφ(z)dz=2iπ{Res(φ,eiπ4)+Res(φ,eiπ4)}Res(φ,eiπ4)=12eiπ4(2i)=14ieiπ4Res(φ,eiπ4)=1(2eiπ4)(2i)=14ieiπ4Rφ(z)dz=2iπ{14ieiπ4+14ieiπ4}=π2(2cos(π4))=π2Ψ=24×π2Ψ=π4

Commented by mathmax by abdo last updated on 07/Jul/21

another way Ψ=∫_(−∞) ^(+∞)  (dx/(x^4  +4)) ⇒Ψ=_(x=(√2)t)   ∫_(−∞) ^(+∞)  (((√2)dt)/(4(1+t^4 )))  =((√2)/4)∫_(−∞) ^(+∞)  (dt/(1+t^4 ))=(1/( (√2)))∫_0 ^∞  (dt/(1+t^4 ))=_(t=z^(1/4) ) (1/(4(√2)))∫_0 ^∞   (z^((1/4)−1) /(1+z))dz  =(1/(4(√2)))×(π/(sin((π/4))))=(π/(4(√2)×(1/( (√2)))))=(π/4)

anotherwayΨ=+dxx4+4Ψ=x=2t+2dt4(1+t4)=24+dt1+t4=120dt1+t4=t=z141420z1411+zdz=142×πsin(π4)=π42×12=π4

Terms of Service

Privacy Policy

Contact: info@tinkutara.com