Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 145911 by Mrsof last updated on 09/Jul/21

Commented by Mrsof last updated on 09/Jul/21

help me sir please by complex  number

helpmesirpleasebycomplexnumber

Answered by Dwaipayan Shikari last updated on 09/Jul/21

∫_(−∞) ^∞ ((sin (x))/((x+1)^2 +1))dx  =∫_(−∞) ^∞ ((sin (u−1))/(u^2 +1))du  =∫_(−∞) ^∞ ((sin (u)cos (1)−sin (1)cos (u))/(u^2 +1))du  =∫_(−∞) ^∞ odd fuction du−∫_(−∞) ^∞ ((cos (u))/(u^2 +1))du  =0−2∫_0 ^∞ ((cos (u))/(u^2 +1))du  =−2(π/2)e^(−1) =−(π/e)

sin(x)(x+1)2+1dx=sin(u1)u2+1du=sin(u)cos(1)sin(1)cos(u)u2+1du=oddfuctionducos(u)u2+1du=020cos(u)u2+1du=2π2e1=πe

Commented by Mrsof last updated on 09/Jul/21

sir can you help me by resideo

sircanyouhelpmebyresideo

Answered by Mathspace last updated on 09/Jul/21

are you student or teacher msof..

areyoustudentorteachermsof..

Answered by mathmax by abdo last updated on 09/Jul/21

Υ=∫_(−∞) ^(+∞)  ((sinx)/(x^2 +2x+2))dx ⇒Υ=Im(∫_(−∞) ^(+∞)  (e^(ix) /(x^2  +2x+2))dx)  let ϕ(z)=(e^(iz) /(z^2  +2z+2))  poles of ϕ?  Δ^′  =1−2=−1 ⇒z_1 =−1+i  and z_2 =−1−i  residus theorem give ∫_(−∞) ^(+∞)  ϕ(z)dz=2iπ Res(ϕ,z_1 )  ϕ(z)=(e^(iz) /((z−z_1 )(z−z_2 ))) ⇒Res(ϕ,z_1 )=lim_(z→z_1 ) (z−z_1 )ϕ(z)  =lim_(z→z_1 )     (e^(iz_ ) /(z_1 −z_2 ))=(e^(iz_1 ) /(2i)) ⇒∫_(−∞) ^(+∞)  ϕ(z)dz=2iπ.(e^(iz_1 ) /(2i))  =πe^(i(−1+i))  =πe^(−1−i)  =πe^(−1) {cos(1)−isin(1)} ⇒  =πe^(−1) cos(1)−iπe^(−1) sin(1) ⇒Υ=−(π/e)sin(1)

Υ=+sinxx2+2x+2dxΥ=Im(+eixx2+2x+2dx)letφ(z)=eizz2+2z+2polesofφ?Δ=12=1z1=1+iandz2=1iresidustheoremgive+φ(z)dz=2iπRes(φ,z1)φ(z)=eiz(zz1)(zz2)Res(φ,z1)=limzz1(zz1)φ(z)=limzz1eizz1z2=eiz12i+φ(z)dz=2iπ.eiz12i=πei(1+i)=πe1i=πe1{cos(1)isin(1)}=πe1cos(1)iπe1sin(1)Υ=πesin(1)

Answered by mathmax by abdo last updated on 09/Jul/21

Ψ=∫_0 ^∞  ((cosx)/(x^4  +1))dx ⇒2Ψ=∫_(−∞) ^(+∞)  ((cosx)/(x^4  +1))dx=Re(∫_(−∞) ^(+∞)  (e^(ix) /(x^4  +1))dx)  ϕ(z)=(e^(iz) /(z^4  +1)) ⇒ϕ(z)=(e^(iz) /((z^2 −i)(z^2 +i)))=(e^(iz) /((z−e^((iπ)/4) )(z+e^((iπ)/4) )(z−e^(−((iπ)/4)) )(z+e^(−((iπ)/4)) )))  the poles of ϕ are +^− e^((iπ)/4)  and +^− e^(−((iπ)/4))   ∫_(−∞) ^(+∞)  ϕ(z)dz=2iπ{Res(ϕ,e^((iπ)/4) )+Res(ϕ,−e^(−((iπ)/4)) )}  Res(ϕ,e^((iπ)/4) )=(e^(ie^((iπ)/4) ) /(2e^((iπ)/4) (2i)))=(1/(4i))e^(−((iπ)/4))  e^(i((1/( (√2)))+(i/( (√2)))))   =(1/(4i))e^(−((iπ)/4))  e^(i/( (√2)))   e^(−(1/( (√2))))    =(e^(−(1/( (√2)))) /(4i))e^(i((1/( (√2)))−(π/4)))   Res(ϕ,−e^(−((iπ)/4)) ) =(e^(−e^(−((iπ)/4)) ) /(−2e^(−((iπ)/4)) (−2i)))=(1/(4i))e^((iπ)/4)  e^(−((1/( (√2)))−(i/( (√2)))))   =(e^(−(1/( (√2)))) /(4i)) e^(i((1/( (√2)))+(π/4)))  ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz=2iπ{ (e^(−(1/( (√2)))) /(4i))e^(i((1/( (√2)))−(π/4)))  +(e^(−(1/( (√2)))) /(4i))e^(i((1/( (√2)))+(π/4))) }  =(π/2)e^(−(1/( (√2))))   {e^(i/( (√2))) (e^((iπ)/4)  +e^(−((iπ)/4)) )}  =(π/2)e^(−(1/( (√2))))   (2(1/( (√2))))e^(i/( (√2)))  =(π/(2(√2)))e^(−(1/( (√2))))   (cos((1/( (√2))))+isin((1/( (√2))))) ⇒  2∫_0 ^∞  ((cosx)/(1+x^4 ))dx =(π/(2(√2)))e^(−(1/( (√2))))   cos((1/( (√2)))) ⇒  ∫_0 ^∞  ((cosx)/(1+x^4 ))dx =(π/(4(√2)))e^(−(1/( (√2))))   cos((1/( (√2))))

Ψ=0cosxx4+1dx2Ψ=+cosxx4+1dx=Re(+eixx4+1dx)φ(z)=eizz4+1φ(z)=eiz(z2i)(z2+i)=eiz(zeiπ4)(z+eiπ4)(zeiπ4)(z+eiπ4)thepolesofφare+eiπ4and+eiπ4+φ(z)dz=2iπ{Res(φ,eiπ4)+Res(φ,eiπ4)}Res(φ,eiπ4)=eieiπ42eiπ4(2i)=14ieiπ4ei(12+i2)=14ieiπ4ei2e12=e124iei(12π4)Res(φ,eiπ4)=eeiπ42eiπ4(2i)=14ieiπ4e(12i2)=e124iei(12+π4)+φ(z)dz=2iπ{e124iei(12π4)+e124iei(12+π4)}=π2e12{ei2(eiπ4+eiπ4)}=π2e12(212)ei2=π22e12(cos(12)+isin(12))20cosx1+x4dx=π22e12cos(12)0cosx1+x4dx=π42e12cos(12)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com