All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 145947 by Khalmohmmad last updated on 09/Jul/21
Commented by hknkrc46 last updated on 09/Jul/21
∫f(x)dx=F(x)+c∫g(x)dx=G(x)+c}G(2)=3f(5)=1∙f(x)=F′(x)∧g(x)=G′(x)∙d[(x2+2)G(x)]dx=d[F(3x−1)]dx⇒2xG(x)+(x2+2)G′(x)=3F′(3x−1)⇒2xG(x)+(x2+2)g(x)=3f(3x−1)▸x=2⇒4G(2)+6g(2)=3f(5)⇒12+6g(2)=3⇒g(2)=−32
Answered by puissant last updated on 09/Jul/21
2xG(x)+(x2+1)g(x)=3f(3x−1)x=2⇒4G(2)+5g(2)=3f(5)⇒5g(2)=3f(5)−4G(2)⇒g(2)=15(3−12)=−95..⇒g(2)=−95
Terms of Service
Privacy Policy
Contact: info@tinkutara.com