Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 146106 by smallEinstein last updated on 10/Jul/21

Answered by Olaf_Thorendsen last updated on 11/Jul/21

Ω = ∫_0 ^(1/2) ((1+(√3))/( (((x+1)^2 (1−x)^6 ))^(1/4) )) dx  Let x = cos2u  Ω = ∫_(π/4) ^(π/6) ((1+(√3))/( (((cos2u+1)^2 (1−cos2u)^6 ))^(1/4) )) (−2sin2udu)  Ω = 2∫_(π/6) ^(π/4) ((1+(√3))/( (((2cos^2 u)^2 (2sin^2 u)^6 ))^(1/4) )) sin2udu  Ω = ∫_(π/6) ^(π/4) ((1+(√3))/( cosusin^3 u)) sinucosudu  Ω = ∫_(π/6) ^(π/4) ((1+(√3))/( sin^2 u)) du  Ω = (1+(√3))[−cotu]_(π/6) ^(π/4)   Ω = (1+(√3))((√3)−1)  Ω = 2

Ω=0121+3(x+1)2(1x)64dxLetx=cos2uΩ=π4π61+3(cos2u+1)2(1cos2u)64(2sin2udu)Ω=2π6π41+3(2cos2u)2(2sin2u)64sin2uduΩ=π6π41+3cosusin3usinucosuduΩ=π6π41+3sin2uduΩ=(1+3)[cotu]π6π4Ω=(1+3)(31)Ω=2

Answered by gsk2684 last updated on 11/Jul/21

∫_0 ^(1/2) ((1+(√3))/((x+1)^(1/2) (1−x)^(3/2) ))dx  ∫_0 ^(1/2) ((1+(√3))/((x+1)^2 (((1−x)/(1+x)))^(3/2) ))dx, put ((1−x)/(1+x))=t⇒((−2)/((1+x)^2 ))dx=dt  ∫_1 ^(1/3) ((1+(√3))/t^(3/2) )(dt/(−2))=((−1)/2)(1+(√3))[(t^((−1)/2) /((−1)/2))]_1 ^(1/3)   =(1+(√3))((1/( (√(1/3))))−1)=2

1201+3(x+1)12(1x)32dx1201+3(x+1)2(1x1+x)32dx,put1x1+x=t2(1+x)2dx=dt1311+3t32dt2=12(1+3)[t1212]113=(1+3)(1131)=2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com