All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 146106 by smallEinstein last updated on 10/Jul/21
Answered by Olaf_Thorendsen last updated on 11/Jul/21
Ω=∫0121+3(x+1)2(1−x)64dxLetx=cos2uΩ=∫π4π61+3(cos2u+1)2(1−cos2u)64(−2sin2udu)Ω=2∫π6π41+3(2cos2u)2(2sin2u)64sin2uduΩ=∫π6π41+3cosusin3usinucosuduΩ=∫π6π41+3sin2uduΩ=(1+3)[−cotu]π6π4Ω=(1+3)(3−1)Ω=2
Answered by gsk2684 last updated on 11/Jul/21
∫1201+3(x+1)12(1−x)32dx∫1201+3(x+1)2(1−x1+x)32dx,put1−x1+x=t⇒−2(1+x)2dx=dt∫1311+3t32dt−2=−12(1+3)[t−12−12]113=(1+3)(113−1)=2
Terms of Service
Privacy Policy
Contact: info@tinkutara.com