All Questions Topic List
Others Questions
Previous in All Question Next in All Question
Previous in Others Next in Others
Question Number 147176 by Lewis junior last updated on 18/Jul/21
Answered by Olaf_Thorendsen last updated on 18/Jul/21
(1)(a)Soitx∈R+∗.−EtudedeF:Lafonctionφ:t⇝e−xtsinttestcontinueparmorceauxsur]0;+∞[.En0:∣e−xtsintt∣∼e−xt→t→01donclafonctionφestprolongeableparcontinuiteen0etl′integraleconverge.En+∞:lafonctionsinestdeclasseC1surR+etsaderiveeestcos,quiestbornee(envaleursabsolues)par1.Doncl′inegalitedesaccroissementsfinisentre0ett∈R+∗s′ecrit∣sin(t)−sin(0)∣⩽1×∣t−0∣Ainsi,endivisantpart>0:∣sint∣t⩽1Etdonc∣φ(t)∣⩽e−xt,quiestintegrableauvoisinagede+∞,d′apreslescriteresdesexponentielles(x>0).Conclusion:l′integrale∫0+∞e−xtsinttdtestabsolumentconvergente,doncconvergente,etF(x)existe.FestdefiniesurR+∗.(b)Soitaunreelstrictementpositif.AppliquonsletheoremedeLeibnizdederivationdesintegralesdependantd′unparametresurl′intervalleD=[a;+∞[,quinousdonnedirectementquelafonctionestdeclasseC1(etdonccontinue).Soith:[a;+∞[×]0;+∞[→Rdefinieparh(x,t)=e−xtsintt−Pourtoutt∈]0;+∞[,lafonctionx⇝h(x,t)estC1sur[a;+∞[carl′exponentiellel′est.−Pourtoutx∈[a;+∞[,lafonctiont⇝h(x,t)estintegrablesur]0;+∞[d′apreslaquestion(a).−Pourtoutx∈[a;+∞[,lafonctiont⇝∂h∂x(x,t)=−te−xtsintt=−extsintestcontinueparmorceauxsur]0;+∞[.−Lafonctionφ(t)=e−atestintegrablesur]0;+∞[d′apreslecriteredesexponentielles(a>0)et∀(x,t)[a;∞[×∈]0;+∞[∣∂h∂x(x,t)∣=∣sint∣e−xt⩽e−at=φ(t)Donc,d′apresletheoremedederivation,lafonctionFestdeclasseC1sur[a;+∞[etF′(x)=−∫0∞e−xtsintdt(c)Nousavonsvuque∣e−xtsintt∣⩽e−xtDonc∣F(x)∣⩽∫0+∞∣e−xtsintt∣dt⩽∫0+∞e−xtdt=1x→x→+∞0Parmajorationlimx→+∞F(x)=0...tobecontinued...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com