Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 147309 by puissant last updated on 19/Jul/21

Answered by mathmax by abdo last updated on 19/Jul/21

I=∫_0 ^∞  ((cosx)/((x^2  +1)^2 )) ⇒2I=∫_(−∞) ^(+∞)  ((cosx)/((x^2  +1)^2 ))dx=Re(∫_(−∞) ^(+∞)  (e^(ix) /((x^2  +1)^2 ))dx)  letϕ(z)=(e^(iz) /((z^2  +1)^2 )) ⇒ϕ(z)=(e^(iz) /((z−i)^2 (z+i)^2 ))  residus ⇒∫_(−∞) ^(+∞)  ϕ(z)dz=2iπ Res(ϕ,i)     Res(ϕ,i)=lim_(z→i)   (1/((2−1)!)){(z−i)^2 ϕ(z)}^((1))   =lim_(z→i)    {(e^(iz) /((z+i)^2 ))}^((1)) =lim_(z→i)   ((ie^(iz) (z+i)^2 −2(z+i)e^(iz) )/((z+i)^4 ))  =lim_(z→i)    ((ie^(iz) (z+i)−2e^(iz) )/((z+i)^3 ))=(((2i)ie^(−1) −2e^(−1) )/((2i)^3 ))=((−4e^(−1) )/(−8i))=(e^(−1) /(2i)) ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz=2iπ.(e^(−1) /(2i))=(π/e) ⇒2I=(π/e) ⇒I=(π/(2e))

I=0cosx(x2+1)22I=+cosx(x2+1)2dx=Re(+eix(x2+1)2dx)letφ(z)=eiz(z2+1)2φ(z)=eiz(zi)2(z+i)2residus+φ(z)dz=2iπRes(φ,i)Res(φ,i)=limzi1(21)!{(zi)2φ(z)}(1)=limzi{eiz(z+i)2}(1)=limziieiz(z+i)22(z+i)eiz(z+i)4=limziieiz(z+i)2eiz(z+i)3=(2i)ie12e1(2i)3=4e18i=e12i+φ(z)dz=2iπ.e12i=πe2I=πeI=π2e

Commented by puissant last updated on 19/Jul/21

thanks

thanks

Answered by mathmax by abdo last updated on 19/Jul/21

parametric method  let f(a)=∫_0 ^∞   ((cosx)/(x^2  +a^2 ))dx   (a>0) ⇒  f^′ (a)=−2a∫_0 ^∞  ((cosx)/((x^2  +a^2 )^2 )) ⇒f^′ (1)=−2∫_0 ^∞  ((cosx)/((x^2  +1)^2 ))dx ⇒  ∫_0 ^∞  ((cosx)/((x^2  +1)^2 ))dx =−(1/2)f^′ (1)  f(a)=(1/2)Re(∫_(−∞) ^(+∞)  (e^(iz) /(z^2  +a^2 ))dx) and  ∫_(−∞) ^(+∞)  (e^(iz) /(z^2  +a^2 ))dz =2iπ Res(h,ia) =2iπ.(e^(−a) /(2ia))=(π/a)e^(−a)  ⇒  f(a)=(π/(2a))e^(−a)  ⇒f^′ (a)=(π/2)(−(1/a^2 )e^(−a) −(1/a)e^(−a) ) ⇒  f^′ (1)=(π/2)(−2e^(−1) ) =−π e^(−1)  ⇒  ∫_0 ^∞   ((cosx)/((x^2  +1)^2 ))dx=−(1/2)f^′ (1)=−(1/2)(−πe^(−1) )=(π/(2e))

parametricmethodletf(a)=0cosxx2+a2dx(a>0)f(a)=2a0cosx(x2+a2)2f(1)=20cosx(x2+1)2dx0cosx(x2+1)2dx=12f(1)f(a)=12Re(+eizz2+a2dx)and+eizz2+a2dz=2iπRes(h,ia)=2iπ.ea2ia=πaeaf(a)=π2aeaf(a)=π2(1a2ea1aea)f(1)=π2(2e1)=πe10cosx(x2+1)2dx=12f(1)=12(πe1)=π2e

Terms of Service

Privacy Policy

Contact: info@tinkutara.com