All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 147309 by puissant last updated on 19/Jul/21
Answered by mathmax by abdo last updated on 19/Jul/21
I=∫0∞cosx(x2+1)2⇒2I=∫−∞+∞cosx(x2+1)2dx=Re(∫−∞+∞eix(x2+1)2dx)letφ(z)=eiz(z2+1)2⇒φ(z)=eiz(z−i)2(z+i)2residus⇒∫−∞+∞φ(z)dz=2iπRes(φ,i)Res(φ,i)=limz→i1(2−1)!{(z−i)2φ(z)}(1)=limz→i{eiz(z+i)2}(1)=limz→iieiz(z+i)2−2(z+i)eiz(z+i)4=limz→iieiz(z+i)−2eiz(z+i)3=(2i)ie−1−2e−1(2i)3=−4e−1−8i=e−12i⇒∫−∞+∞φ(z)dz=2iπ.e−12i=πe⇒2I=πe⇒I=π2e
Commented by puissant last updated on 19/Jul/21
thanks
parametricmethodletf(a)=∫0∞cosxx2+a2dx(a>0)⇒f′(a)=−2a∫0∞cosx(x2+a2)2⇒f′(1)=−2∫0∞cosx(x2+1)2dx⇒∫0∞cosx(x2+1)2dx=−12f′(1)f(a)=12Re(∫−∞+∞eizz2+a2dx)and∫−∞+∞eizz2+a2dz=2iπRes(h,ia)=2iπ.e−a2ia=πae−a⇒f(a)=π2ae−a⇒f′(a)=π2(−1a2e−a−1ae−a)⇒f′(1)=π2(−2e−1)=−πe−1⇒∫0∞cosx(x2+1)2dx=−12f′(1)=−12(−πe−1)=π2e
Terms of Service
Privacy Policy
Contact: info@tinkutara.com