Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 147310 by mnjuly1970 last updated on 19/Jul/21

Commented by Tawa11 last updated on 03/Aug/21

Great

Great

Answered by qaz last updated on 20/Jul/21

∫_0 ^1 ln(x)∙ln(1+x)dx  =xln(x)∙ln(1+x)∣_0 ^1 −∫_0 ^1 x(((ln(1+x))/x)+((lnx)/(1+x)))dx  =−∫_0 ^1 (ln(1+x)+(1−(1/(1+x)))lnxdx  =−[(1+x)ln(1+x)−(1+x)]_0 ^1 −∫_0 ^1 lnxdx+∫_0 ^1 ((lnx)/(1+x))dx  =1−2ln2−[xlnx−x]_0 ^1 +ln(1+x)lnx∣_0 ^1 −∫_0 ^1 ((ln(1+x))/x)dx  =2−2ln2−(π^2 /(12))

01ln(x)ln(1+x)dx=xln(x)ln(1+x)0101x(ln(1+x)x+lnx1+x)dx=01(ln(1+x)+(111+x)lnxdx=[(1+x)ln(1+x)(1+x)]0101lnxdx+01lnx1+xdx=12ln2[xlnxx]01+ln(1+x)lnx0101ln(1+x)xdx=22ln2π212

Terms of Service

Privacy Policy

Contact: info@tinkutara.com