Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 147477 by vvvv last updated on 21/Jul/21

Commented by Rustambek last updated on 21/Jul/21

salom

salom

Answered by puissant last updated on 21/Jul/21

=∫_0 ^( (π/2)) ((cos(x)+18sin(x))/(−4cos(x)+3sin(x))) dx  =[(((1×(−4)+3×18)/((−4)^2 +3^3 )))x + (((1×3−18×(−4))/((−4)^2 +3^2 )))ln∣−4cos(x)+3sin(x)∣]_0 ^(π/2)   =[2x+3ln∣−4cos(x)+3sin(x)∣]_0 ^(π/2)   =(π+3ln3)−3ln4  ⇒I= π+3ln((3/4))...

=0π2cos(x)+18sin(x)4cos(x)+3sin(x)dx=[(1×(4)+3×18(4)2+33)x+(1×318×(4)(4)2+32)ln4cos(x)+3sin(x)]0π2=[2x+3ln4cos(x)+3sin(x)]0π2=(π+3ln3)3ln4I=π+3ln(34)...

Commented by vvvv last updated on 21/Jul/21

yes  prove is formulas

yesproveisformulas

Commented by gsk2684 last updated on 21/Jul/21

∫((A(−c sin x+d cos x)+B(c cos x+d sin x) )/(c cos x+d sin x)) dx  ∫(((−Ac+Bd) sin x+(Ad+Bc) cos x )/(c cos x+d sin x)) dx  ∴solving dB−cA=b , cB+dA=a  ⇒  dB−cA−b=0  cB+dA−a=0  ⇒B=((ac+bd)/(c^2 +d^2 )) , A=((ad−bc)/(c^2 +d^2 ))  ∴∫(((ad−bc)/(c^2 +d^2 )))((( −c sin x+d cos x)/(c cos x+d sin x)))dx+∫(((ac+bd)/(c^2 +d^2 )))dx  (((ad−bc)/(c^2 +d^2 )))ln(c cos x+d sin x)+(((ac+bd)/(c^2 +d^2 )))x

A(csinx+dcosx)+B(ccosx+dsinx)ccosx+dsinxdx(Ac+Bd)sinx+(Ad+Bc)cosxccosx+dsinxdxsolvingdBcA=b,cB+dA=adBcAb=0cB+dAa=0B=ac+bdc2+d2,A=adbcc2+d2(adbcc2+d2)(csinx+dcosxccosx+dsinx)dx+(ac+bdc2+d2)dx(adbcc2+d2)ln(ccosx+dsinx)+(ac+bdc2+d2)x

Commented by vvvv last updated on 21/Jul/21

?

?

Commented by puissant last updated on 21/Jul/21

∫((acos(x)+bsin(x))/(ccos(x)+dsin(x)))dx  =(((ac+bd)/(c^2 +d^2 )))x+(((ad−bc)/(c^2 +d^2 )))ln∣ccos(x)+dsin(x)∣+c

acos(x)+bsin(x)ccos(x)+dsin(x)dx=(ac+bdc2+d2)x+(adbcc2+d2)lnccos(x)+dsin(x)+c

Commented by mathmax by abdo last updated on 21/Jul/21

I=∫_0 ^(π/2)  ((cosx+18sinx)/(4cosx−3sinx))dx ⇒I=∫_0 ^(π/2)  ((1+18tanx)/(4−3tanx))dx  =_(tanx=t)   ∫_0 ^∞  ((1+18t)/(4−3t))×(dt/(1+t^2 )) =−∫_0 ^∞  ((18t+1)/((3t−4)(t^2  +1)))dt  let decompose F(t)=((18t+1)/((3t−4)(t^2  +1)))  F(t)=(a/(3t−4))+((bt+c)/(t^2  +1))  a=((18.(4/3)+1)/(((16)/9)+1))=((25)/(25))×9 =9  lim_(t→∞) tF(t)=0=(a/3)+b ⇒b=−(9/3)=−3  F(0)=−(1/4)=−(a/4)+c =−(9/4)+c ⇒c=(9/4)−(1/4)=2 ⇒  F(t)=(9/(3t−4))+((−3t+2)/(t^2  +1)) ⇒  ∫_0 ^∞ F(t)dt =3∫_0 ^∞ ((1/(t−(4/3)))−(3/2)×((2t)/(t^2 +1)) +(2/(t^2  +1)))dt  =3[log∣((t−(4/3))/( (√(t^2 +1))))∣]_0 ^∞ +6[arctant]_0 ^∞   =3(−log((4/3)))+6((π/2))=3π−3log((4/3)) ⇒  I=3log((4/3))−3π =6log2−3log3−3π

I=0π2cosx+18sinx4cosx3sinxdxI=0π21+18tanx43tanxdx=tanx=t01+18t43t×dt1+t2=018t+1(3t4)(t2+1)dtletdecomposeF(t)=18t+1(3t4)(t2+1)F(t)=a3t4+bt+ct2+1a=18.43+1169+1=2525×9=9limttF(t)=0=a3+bb=93=3F(0)=14=a4+c=94+cc=9414=2F(t)=93t4+3t+2t2+10F(t)dt=30(1t4332×2tt2+1+2t2+1)dt=3[logt43t2+1]0+6[arctant]0=3(log(43))+6(π2)=3π3log(43)I=3log(43)3π=6log23log33π

Terms of Service

Privacy Policy

Contact: info@tinkutara.com