Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 148064 by tabata last updated on 25/Jul/21

Commented by tabata last updated on 25/Jul/21

help me sir in complex number

helpmesirincomplexnumber

Answered by Olaf_Thorendsen last updated on 25/Jul/21

Q6.  I = ∫_0 ^π (dθ/(2−cosθ))  Let t = tan(θ/2)  I = ∫_0 ^∞ (1/(2−((1−t^2 )/(1+t^2 )))).((2dt)/(1+t^2 ))  I = 2∫_0 ^∞ (dt/(2(1+t^2 )−(1−t^2 )))  I = 2∫_0 ^∞ (dt/(3t^2 +1)) = (2/( (√3)))∫_0 ^∞ (((√3)dt)/(3t^2 +1))  I = (2/( (√3)))[arctan((√3)t)]_0 ^∞  = (π/( (√3)))

Q6.I=0πdθ2cosθLett=tanθ2I=0121t21+t2.2dt1+t2I=20dt2(1+t2)(1t2)I=20dt3t2+1=2303dt3t2+1I=23[arctan(3t)]0=π3

Answered by Olaf_Thorendsen last updated on 25/Jul/21

J = ∫_0 ^∞ ((cos(2x))/(x^2 +1)) dx = (1/2)∫_(−∞) ^(+∞) ((cos(2x))/(x^2 +1)) dx  J = (1/2)∫_(−∞) ^(+∞) (e^(2ix) /(x^2 +1)) dx  J = (1/2).( 2iπ.Res((e^(2ix) /(x^2 +1)),+i))  J = iπ.lim_(x→+i) ((e^(2ix) /(x+i))) = iπ.(e^(−2) /(2i)) = (π/(2e^2 ))

J=0cos(2x)x2+1dx=12+cos(2x)x2+1dxJ=12+e2ixx2+1dxJ=12.(2iπ.Res(e2ixx2+1,+i))J=iπ.limx+i(e2ixx+i)=iπ.e22i=π2e2

Answered by qaz last updated on 25/Jul/21

∫_0 ^∞ ((L{cos (ax)})/(x^2 +1))dx=∫_0 ^∞ (s/((x^2 +1)(x^2 +s^2 )))dx=(π/(2(s+1)))  ∫_0 ^∞ ((cos (2x))/(x^2 +1))dx=L^(−1) {(π/(2(s+1)))}(a=2)=(π/(2e^2 ))

0L{cos(ax)}x2+1dx=0s(x2+1)(x2+s2)dx=π2(s+1)0cos(2x)x2+1dx=L1{π2(s+1)}(a=2)=π2e2

Answered by mathmax by abdo last updated on 25/Jul/21

I=∫_0 ^∞   ((cos(2x))/(x^2  +1))dx ⇒2I=∫_(−∞) ^(+∞)  (e^(2ix) /(x^2  +1))dx let ϕ(z)=(e^(2iz) /(z^2  +1))  ϕ(z)=(e^(2iz) /((z−i)(z+i))) ⇒∫_(−∞) ^(+∞) ϕ(z)dz=2iπRes(ϕ,i)  =2iπ×(e^(2i(i)) /(2i)) =πe^(−2)  ⇒I =(π/(2e^2 ))★

I=0cos(2x)x2+1dx2I=+e2ixx2+1dxletφ(z)=e2izz2+1φ(z)=e2iz(zi)(z+i)+φ(z)dz=2iπRes(φ,i)=2iπ×e2i(i)2i=πe2I=π2e2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com