Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 148249 by mnjuly1970 last updated on 26/Jul/21

Commented by Kamel last updated on 26/Jul/21

  Ω_n =∫_0 ^(+∞) ((cos(πx))/((x^2 +1^2 )(x^2 +2^2 )....(x^2 +n^2 )))dx  (1/((x^2 +1^2 )(x^2 +2^2 )....(x^2 +n^2 )))=Σ_(k=1) ^n (a_k /((x^2 +k^2 )))...(E)  X=x^2 , (E)×(x^2 +k^2 ), X→−k^2   a_k =(1/((1^2 −k^2 )(2^2 −k^2 )...((k−1)^2 −k^2 )((k+1)^2 −k^2 )((k+2)^2 −k^2 )...(n^2 −k^2 )))       =(((−1)^(k−1) k!(2k))/((k−1)!(2k−1)!(n−k)!(2k+1)(2k+2)(2k+3)...(n+k)))       =((2(−1)^(k−1) k^2 )/((n+k)!(n−k)!))  Ω_n =2Σ_(k=1) ^n ((k^2 (−1)^(k−1) )/((n+k)!(n−k)!))∫_0 ^(+∞) ((cos(πx))/(x^2 +k^2 ))dx  ∫_0 ^(+∞) ((cos(πx))/(x^2 +k^2 ))dx=(π/(2k))e^(−kπ)   ∴ Ω_n =πΣ_(k=1) ^n (((−1)^(k−1) ke^(−kπ) )/((n+k)!(n−k)!))            ∴  ∫_0 ^(+∞) ((cos(πx))/((x^2 +1^2 )(x^2 +2^2 )....(x^2 +n^2 )))dx=πΣ_(k=1) ^n (((−1)^(k−1) ke^(−kπ) )/((n+k)!(n−k)!))

Ωn=0+cos(πx)(x2+12)(x2+22)....(x2+n2)dx1(x2+12)(x2+22)....(x2+n2)=nk=1ak(x2+k2)...(E)X=x2,(E)×(x2+k2),Xk2ak=1(12k2)(22k2)...((k1)2k2)((k+1)2k2)((k+2)2k2)...(n2k2)=(1)k1k!(2k)(k1)!(2k1)!(nk)!(2k+1)(2k+2)(2k+3)...(n+k)=2(1)k1k2(n+k)!(nk)!Ωn=2nk=1k2(1)k1(n+k)!(nk)!0+cos(πx)x2+k2dx0+cos(πx)x2+k2dx=π2kekπΩn=πnk=1(1)k1kekπ(n+k)!(nk)!0+cos(πx)(x2+12)(x2+22)....(x2+n2)dx=πnk=1(1)k1kekπ(n+k)!(nk)!

Answered by Olaf_Thorendsen last updated on 26/Jul/21

Ω = ∫_0 ^∞ ((cos(πx))/(Π_(k=1) ^n (x^2 +k^2 ))) dx  Ω = (1/2)∫_(−∞) ^∞ ((cos(πx))/(Π_(k=1) ^n (x^2 +k^2 ))) dx  Let f(x) = ((cos(πx))/(Π_(k=1) ^n (x^2 +k^2 ))) dx  The function f is even :  Ω = (1/2)Re∫_(−∞) ^∞ (e^(iπx) /(Π_(k=1) ^n (x^2 +k^2 ))) dx =  (1/2)∫_(−∞) ^∞ (e^(iπx) /(Π_(k=1) ^n (x^2 +k^2 ))) dx  Ω = 2iπΣ_(k=1) ^n Res(f(x),ik)  Res(f(x),ik) = lim_(x→ik) ((e^(iπx) /((x+ik)Π_(p=1_(p≠k) ) ^n (x^2 +p^2 ))))  Res(f(x),ik) = (e^(−kπ) /((2ik)Π_(p=1_(p≠k) ) ^n (p^2 −k^2 )))  Ω =  πΣ_(k=1) ^n (e^(−kπ) /(kΠ_(p=1_(p≠k) ) ^n (p^2 −k^2 )))  ...to be continued...

Ω=0cos(πx)nk=1(x2+k2)dxΩ=12cos(πx)nk=1(x2+k2)dxLetf(x)=cos(πx)nk=1(x2+k2)dxThefunctionfiseven:Ω=12Reeiπxnk=1(x2+k2)dx=12eiπxnk=1(x2+k2)dxΩ=2iπnk=1Res(f(x),ik)Res(f(x),ik)=limxik(eiπx(x+ik)np=1pk(x2+p2))Res(f(x),ik)=ekπ(2ik)np=1pk(p2k2)Ω=πnk=1ekπknp=1pk(p2k2)...tobecontinued...

Answered by mathmax by abdo last updated on 26/Jul/21

Ψ_n  =∫_0 ^∞   ((cos(πx))/((x^2  +1^2 )(x^2  +2^2 ).....(x^2  +n^2 )))dx ⇒  2Ψ_n =Re(∫_(−∞) ^(+∞)  (e^(iπx) /((x^2  +1^2 )(x^2  +2^2 )....(x^2  +n^2 )))dx)  let ϕ(z)=(e^(iπz) /((z^2  +1^2 )(z^2  +2^2 )....(z^2 +n^2 ))) ⇒  ϕ(z)=(e^(iπz) /((z−i)(z+i)(z+2i)(z−2i)....(z−ni)(z+ni)))  the poles of ϕ are +^− ki    rdsidus theorem give  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπΣ_(k=1) ^n  Res(ϕ,ki)  ϕ(z)=(e^(iπz) /((z−i)(z−2i)....(z−ni)(z+i)(z+2i)...(z+ni)))  =(e^(iπz) /((z−i)(z−2i)....(z−(k−1)i)(z−ki)(z−(k+1)i)...(z−ni)Π_(k=1) ^n (z+ki)))  ⇒Res(ϕ,ki)=(e^(iπ(ki)) /((ki−i)(ki−2i)....(i)(−i)...(ki−ni)Π_(k=1) ^n (2ki)))  =(e^(−πk) /(i^(k−1) (k−1)!(−i)^(n−k) (n−k)!(2i)^n  n!))  =(e^(−kπ) /((−1)^(n−k) i^(n−1) (i)^n  2^n (k−1)!(n−k)!n!))  =i(e^(−kπ) /((−1)^k  2^n (k−1)!(n−k)!n!)) ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =((2iπ)/(n!×2^n ))iΣ_(k=1) ^n  (((−1)^k  e^(−kπ) )/((k−1)!(n−k)!))  =−(π/(n! 2^(n−1) ))Σ_(k=1) ^n  (((−1)^k  e^(−kπ) )/((k−1)!(n−k)!))  =(π/(n!2^(n−1) ))Σ_(k=1) ^n  (((−1)^(k−1)  e^(−kπ) )/((k−1)!(n−k)!))=2Ψ_n  ⇒  Ψ_n =(π/(2^n n!))Σ_(k=1) ^n  (((−1)^(k−1)  e^(−kπ) )/((k−1)!(n−k)!))

Ψn=0cos(πx)(x2+12)(x2+22).....(x2+n2)dx2Ψn=Re(+eiπx(x2+12)(x2+22)....(x2+n2)dx)letφ(z)=eiπz(z2+12)(z2+22)....(z2+n2)φ(z)=eiπz(zi)(z+i)(z+2i)(z2i)....(zni)(z+ni)thepolesofφare+kirdsidustheoremgive+φ(z)dz=2iπk=1nRes(φ,ki)φ(z)=eiπz(zi)(z2i)....(zni)(z+i)(z+2i)...(z+ni)=eiπz(zi)(z2i)....(z(k1)i)(zki)(z(k+1)i)...(zni)k=1n(z+ki)Res(φ,ki)=eiπ(ki)(kii)(ki2i)....(i)(i)...(kini)k=1n(2ki)=eπkik1(k1)!(i)nk(nk)!(2i)nn!=ekπ(1)nkin1(i)n2n(k1)!(nk)!n!=iekπ(1)k2n(k1)!(nk)!n!+φ(z)dz=2iπn!×2nik=1n(1)kekπ(k1)!(nk)!=πn!2n1k=1n(1)kekπ(k1)!(nk)!=πn!2n1k=1n(1)k1ekπ(k1)!(nk)!=2ΨnΨn=π2nn!k=1n(1)k1ekπ(k1)!(nk)!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com