All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 148249 by mnjuly1970 last updated on 26/Jul/21
Commented by Kamel last updated on 26/Jul/21
Ωn=∫0+∞cos(πx)(x2+12)(x2+22)....(x2+n2)dx1(x2+12)(x2+22)....(x2+n2)=∑nk=1ak(x2+k2)...(E)X=x2,(E)×(x2+k2),X→−k2ak=1(12−k2)(22−k2)...((k−1)2−k2)((k+1)2−k2)((k+2)2−k2)...(n2−k2)=(−1)k−1k!(2k)(k−1)!(2k−1)!(n−k)!(2k+1)(2k+2)(2k+3)...(n+k)=2(−1)k−1k2(n+k)!(n−k)!Ωn=2∑nk=1k2(−1)k−1(n+k)!(n−k)!∫0+∞cos(πx)x2+k2dx∫0+∞cos(πx)x2+k2dx=π2ke−kπ∴Ωn=π∑nk=1(−1)k−1ke−kπ(n+k)!(n−k)!∴∫0+∞cos(πx)(x2+12)(x2+22)....(x2+n2)dx=π∑nk=1(−1)k−1ke−kπ(n+k)!(n−k)!
Answered by Olaf_Thorendsen last updated on 26/Jul/21
Ω=∫0∞cos(πx)∏nk=1(x2+k2)dxΩ=12∫−∞∞cos(πx)∏nk=1(x2+k2)dxLetf(x)=cos(πx)∏nk=1(x2+k2)dxThefunctionfiseven:Ω=12Re∫−∞∞eiπx∏nk=1(x2+k2)dx=12∫−∞∞eiπx∏nk=1(x2+k2)dxΩ=2iπ∑nk=1Res(f(x),ik)Res(f(x),ik)=limx→ik(eiπx(x+ik)∏np=1p≠k(x2+p2))Res(f(x),ik)=e−kπ(2ik)∏np=1p≠k(p2−k2)Ω=π∑nk=1e−kπk∏np=1p≠k(p2−k2)...tobecontinued...
Answered by mathmax by abdo last updated on 26/Jul/21
Ψn=∫0∞cos(πx)(x2+12)(x2+22).....(x2+n2)dx⇒2Ψn=Re(∫−∞+∞eiπx(x2+12)(x2+22)....(x2+n2)dx)letφ(z)=eiπz(z2+12)(z2+22)....(z2+n2)⇒φ(z)=eiπz(z−i)(z+i)(z+2i)(z−2i)....(z−ni)(z+ni)thepolesofφare+−kirdsidustheoremgive∫−∞+∞φ(z)dz=2iπ∑k=1nRes(φ,ki)φ(z)=eiπz(z−i)(z−2i)....(z−ni)(z+i)(z+2i)...(z+ni)=eiπz(z−i)(z−2i)....(z−(k−1)i)(z−ki)(z−(k+1)i)...(z−ni)∏k=1n(z+ki)⇒Res(φ,ki)=eiπ(ki)(ki−i)(ki−2i)....(i)(−i)...(ki−ni)∏k=1n(2ki)=e−πkik−1(k−1)!(−i)n−k(n−k)!(2i)nn!=e−kπ(−1)n−kin−1(i)n2n(k−1)!(n−k)!n!=ie−kπ(−1)k2n(k−1)!(n−k)!n!⇒∫−∞+∞φ(z)dz=2iπn!×2ni∑k=1n(−1)ke−kπ(k−1)!(n−k)!=−πn!2n−1∑k=1n(−1)ke−kπ(k−1)!(n−k)!=πn!2n−1∑k=1n(−1)k−1e−kπ(k−1)!(n−k)!=2Ψn⇒Ψn=π2nn!∑k=1n(−1)k−1e−kπ(k−1)!(n−k)!
Terms of Service
Privacy Policy
Contact: info@tinkutara.com