Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 148437 by aliibrahim1 last updated on 28/Jul/21

Answered by mathmax by abdo last updated on 28/Jul/21

I=∫_0 ^1  (dx/( (√(1+x))+(√(1−x)))) ⇒I=∫_0 ^1  (((√(1+x))−(√(1−x)))/(1+x−1+x))dx  =∫_0 ^1  (((√(1+x))−(√(1−x)))/(2x))dx =(1/2)lim_(ξ→0) ∫_ξ ^1  (((√(1+x))−(√(1−x)))/x)dx  we haveA_ξ = ∫_ξ ^1  (((√(1+x))−(√(1−x)))/x)dx =∫_ξ ^1  ((√(1+x))/x)dx−∫_ξ ^1  ((√(1−x))/x)dx  =H_ξ −K_ξ   H_ξ =_((√(1+x))=t→1+x=t^2 )     ∫_(√(1+ξ)) ^(√2) (t/(t^2 −1))(2t)dt  =2∫_(√(1+ξ)) ^(√2)   ((t^2 −1+1)/(t^2 −1))dt =2((√2)−(√(1+ξ)))+2∫_(√(1+ξ)) ^(√2) (dt/((t−1)(t+1)))  =2((√2)−(√(1+ξ))) +∫_(√(1+ξ)) ^(√2) ((1/(t−1))−(1/(t+1)))dt  =2((√2)−(√(1+ξ)))+[log∣((t−1)/(t+1))∣]_(√(1+ξ)) ^(√2)   =2((√2)−(√(1+ξ)))+log((((√2)−1)/( (√2)+1)))−log((((√(1+ξ))−1)/( (√(1+ξ))+1)))  K_ξ =∫_ξ ^1  ((√(1−x))/x)dx =_((√(1−x))=t→x=1−t^2 )   ∫_(√(1−ξ)) ^0  (t/(1−t^2 ))(−2t)dt  =2∫_0 ^(√(1−ξ))   (t^2 /(1−t^2 ))dt =−2∫_0 ^(√(1−ξ))  ((t^2 −1+1)/(t^2 −1))dt  =−2(√(1−ξ))−2∫_0 ^(√(1−ξ)) (dt/(t^2 −1))=−2(√(1−ξ))−∫_0 ^(√(1−ξ)) ((1/(t−1))−(1/(t+1)))dt  =−2(√(1−ξ))−[log∣((t−1)/(t+1))∣]_0 ^(√(1−ξ))   =−2(√(1−ξ))−log(((1−(√(1−ξ)))/( (√(1−ξ))+1)))⇒  A_ξ =2((√2)−1)+log((((√2)−1)/( (√2)+1)))−log((((√(1+ξ))−1)/( (√(1+ξ))+1)))  2(√(1−ξ))+log(((1−(√(1−ξ)))/(1+(√(1−ξ)))))  we have  log(((1−(√(1−ξ)))/(1+(√(1−ξ)))))−log((((√(1+ξ))−1)/( (√(1+ξ))+1)))  log(((1−(√(1−ξ)))/(1+(√(1−ξ))))×(((√(1+ξ))+1)/( (√(1+ξ))−1)))  1−(√(1−ξ))∼1−(1−(ξ/2))=(ξ/2)  (√(1+ξ))−1∼1+(ξ/2)−1=(ξ/2) ⇒log(....)∼log((((√(1+ξ))+1)/(1+(√(1−ξ)))))→0(ξ→0) ⇒  lim_(ξ→0) A_ξ =2(√2)−2+log((√2)−1)−log((√2)+1)+2  =2(√2)+log((√2)−1)−log((√2)+1) ⇒  I=(√2)+(1/2)log((√2)−1)−(1/2)log((√2)+1)

I=01dx1+x+1xI=011+x1x1+x1+xdx=011+x1x2xdx=12limξ0ξ11+x1xxdxwehaveAξ=ξ11+x1xxdx=ξ11+xxdxξ11xxdx=HξKξHξ=1+x=t1+x=t21+ξ2tt21(2t)dt=21+ξ2t21+1t21dt=2(21+ξ)+21+ξ2dt(t1)(t+1)=2(21+ξ)+1+ξ2(1t11t+1)dt=2(21+ξ)+[logt1t+1]1+ξ2=2(21+ξ)+log(212+1)log(1+ξ11+ξ+1)Kξ=ξ11xxdx=1x=tx=1t21ξ0t1t2(2t)dt=201ξt21t2dt=201ξt21+1t21dt=21ξ201ξdtt21=21ξ01ξ(1t11t+1)dt=21ξ[logt1t+1]01ξ=21ξlog(11ξ1ξ+1)Aξ=2(21)+log(212+1)log(1+ξ11+ξ+1)21ξ+log(11ξ1+1ξ)wehavelog(11ξ1+1ξ)log(1+ξ11+ξ+1)log(11ξ1+1ξ×1+ξ+11+ξ1)11ξ1(1ξ2)=ξ21+ξ11+ξ21=ξ2log(....)log(1+ξ+11+1ξ)0(ξ0)limξ0Aξ=222+log(21)log(2+1)+2=22+log(21)log(2+1)I=2+12log(21)12log(2+1)

Commented by aliibrahim1 last updated on 29/Jul/21

thx sir

thxsir

Answered by mathmax by abdo last updated on 28/Jul/21

la plus part pense que cette integrale est simple mais en realite   il n est pas simple...

lapluspartpensequecetteintegraleestsimplemaisenrealiteilnestpassimple...

Commented by puissant last updated on 29/Jul/21

prof en posant x=cos(2θ) c_ξ a devient  beaucoup simple.. en fait c′est une  autre methode...

profenposantx=cos(2θ)ext\cccadevientbeaucoupsimple..enfaitcestuneautremethode...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com