Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 14863 by b.e.h.i.8.3.4.1.7@gmail.com last updated on 05/Jun/17

Commented by adelson last updated on 05/Jun/17

what′s W?

whatsW?

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 05/Jun/17

ABCD,square.  1)show that:  DE^2 +EB^2 =AE^2 +EC^2  .  2)if :AE=EB=AB⇒∡CED=?

ABCD,square.1)showthat:DE2+EB2=AE2+EC2.2)if:AE=EB=ABCED=?

Commented by RasheedSoomro last updated on 05/Jun/17

AE=EB=AB⇒CE=DE  The diagram is not exactly according to  data.

AE=EB=ABCE=DEThediagramisnotexactlyaccordingtodata.

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 05/Jun/17

mr Rasheed! in part #2, we assume   that: if AE=EB=AB.  for part #2 ,diagram not in scale.  figure of mr Ajfour is correct.

You can't use 'macro parameter character #' in math modethat:ifAE=EB=AB.You can't use 'macro parameter character #' in math modefigureofmrAjfouriscorrect.

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 05/Jun/17

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 05/Jun/17

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 05/Jun/17

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 05/Jun/17

if :t=z=a⇒ h_2 =a((√3)/2),h_4 =a−a((√3)/2)  tg∡CDE=(h_4 /(a/2))=((a−a((√3)/2))/(a/2))=2−(√(3.))  ⇒∡CDE=∡EDC=15^•   ⇒∡DEC=180−2×15=150^•  .■

if:t=z=ah2=a32,h4=aa32tgCDE=h4a2=aa32a2=23.CDE=EDC=15DEC=1802×15=150.

Answered by ajfour last updated on 05/Jun/17

DE^2 +EB^2 =x^2 +y^2 +(a−x)^2 +(a−y)^2   AE^2 +EC^2 =(a−x)^2 +y^2 +x^2 +(a−y)^2   therefore equal.    When △AEB is equilateral,    a−y=y    or    y=(a/2)    a−x= acos (π/6) = ((a(√3))/2)    ⇒   x =a(1−((√3)/2)) = a(((2−(√3))/2))    ∠CED= 2tan^(−1) (((a−y)/x))                   =2tan^(−1) ((y/x))                   =2tan^(−1) [(((a/2))/(a(2−(√3))/2)))]                   =2tan^(−1) (2+(√3))   or ∠CED=π− tan^(−1) ((1/(√3)))                         =π−(π/6)=((5π)/6) .

DE2+EB2=x2+y2+(ax)2+(ay)2AE2+EC2=(ax)2+y2+x2+(ay)2thereforeequal.WhenAEBisequilateral,ay=yory=a2ax=acosπ6=a32x=a(132)=a(232)CED=2tan1(ayx)=2tan1(yx)=2tan1[(a/2)a(23)/2)]=2tan1(2+3)orCED=πtan1(13)=ππ6=5π6.

Commented by ajfour last updated on 05/Jun/17

Commented by RasheedSoomro last updated on 05/Jun/17

You′re quicker!

Yourequicker!

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 05/Jun/17

thank you mr Ajfour!your answer is  quick and nice and correct and smart!  god bless you my friend.

thankyoumrAjfour!youranswerisquickandniceandcorrectandsmart!godblessyoumyfriend.

Commented by ajfour last updated on 05/Jun/17

Tanks of thanks Sir.

TanksofthanksSir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com