All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 149081 by Integrals last updated on 02/Aug/21
Answered by Ar Brandon last updated on 02/Aug/21
ϕ=∫dβ2−3sinβ,t=tanβ2=∫22−3(2t1+t2)⋅dt1+t2=∫dtt2−3t+1=∫dt(t−32)2−54=−25arctanh(2t−35)+C=15ln∣2t−3−52t−3+5∣+C=55ln∣2tan(β2)−3−52tan(β2)−3+5∣+C
Commented by Ar Brandon last updated on 02/Aug/21
sinβ=sinβ1=2sinβ2cosβ2cos2β2+sin2β2=2tanβ21+tan2β2t=tanβ2⇒dt=12sec2β2dβ=12(1+tan2β2)dβarctanh(x)=12ln∣1+x1−x∣
Terms of Service
Privacy Policy
Contact: info@tinkutara.com