Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 149081 by Integrals last updated on 02/Aug/21

Answered by Ar Brandon last updated on 02/Aug/21

φ=∫(dβ/(2−3sinβ)) , t=tan(β/2)     =∫(2/(2−3(((2t)/(1+t^2 )))))∙(dt/(1+t^2 ))=∫(dt/(t^2 −3t+1))     =∫(dt/((t−(3/2))^2 −(5/4)))=−(2/( (√5)))arctanh(((2t−3)/( (√5))))+C     =(1/( (√5)))ln∣((2t−3−(√5))/(2t−3+(√5)))∣+C=((√5)/5)ln∣((2tan((β/2))−3−(√5))/(2tan((β/2))−3+(√5)))∣+C

ϕ=dβ23sinβ,t=tanβ2=223(2t1+t2)dt1+t2=dtt23t+1=dt(t32)254=25arctanh(2t35)+C=15ln2t352t3+5+C=55ln2tan(β2)352tan(β2)3+5+C

Commented by Ar Brandon last updated on 02/Aug/21

sinβ=((sinβ)/1)=((2sin(β/2)cos(β/2))/(cos^2 (β/2)+sin^2 (β/2)))=((2tan(β/2))/(1+tan^2 (β/2)))  t=tan(β/2)⇒dt=(1/2)sec^2 (β/2)dβ=(1/2)(1+tan^2 (β/2))dβ  arctanh(x)=(1/2)ln∣((1+x)/(1−x))∣

sinβ=sinβ1=2sinβ2cosβ2cos2β2+sin2β2=2tanβ21+tan2β2t=tanβ2dt=12sec2β2dβ=12(1+tan2β2)dβarctanh(x)=12ln1+x1x

Terms of Service

Privacy Policy

Contact: info@tinkutara.com