Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 149100 by Naser last updated on 02/Aug/21

Answered by Kamel last updated on 02/Aug/21

1/ L(J_0 (t))=(1/π)∫_0 ^π ∫_0 ^(+∞) cos(tsin(θ))e^(−st) dtdθ=(1/π)∫_0 ^π ((sdθ)/(sin^2 (θ)+s^2 ))=((2s)/π)∫_0 ^(π/2) (dθ/(s^2 +cos^2 (θ)))                      =((2s)/π)∫_0 ^(+∞) (du/(1+s^2 +s^2 u^2 ))=(1/( (√(1+s^2 ))))  2/β(n,n)=((Γ(n)Γ(n))/(Γ(2n)))=Γ((1/2))Γ(n)2^(1−2n)  ((Γ(n)2^(2n−1) )/(Γ(2n)Γ((1/2))))=2^(1−2n) ((Γ(n)Γ((1/2)))/(Γ(n+(1/2))))=2^(1−2n) β(n,(1/2))  3/L^(−1) ((d/ds)L^(−1) (Ln(1+(1/s^2 ))))=L^(−1) (((2s)/(1+s^2 ))−(2/s))=2(cos(t)−1)  ∴ L^(−1) (Ln(1+(1/s^2 )))=2((1−cos(t))/t)  4/???  5/ ∫_0 ^2 x^3 J_0 (x)dx=∫_0 ^2 x^2 (xJ_(1−1) (x))dx=8J_1 (2)−2∫_0 ^2 x^2 J_(2−1) (x)dx=8(J_1 (2)−J_2 (2))  6−1/∫_0 ^1 x^m Ln^n (x)dx=^(x=e^(−t) ) (−1)^n ∫_0 ^(+∞) t^n e^(−(m+1)t) dt=(((−1)^n n!)/((m+1)^(m+1) ))  6−2/∫_(−∞) ^(+∞) ((e^(2θ) dθ)/(e^(3θ) +1))=^(t=e^(−3θ) ) (1/3)∫_0 ^(+∞) ((t^(−(2/3)) dt)/(1+t))=((2π)/(3(√3)))  7/ L(sin((√t)))=∫_0 ^(+∞) sin((√t))e^(−st) dt=^(u=(√t)) 2∫_0 ^(+∞) usin(u)e^(−su^2 ) du=(1/( s))∫_0 ^(+∞) cos(u)e^(−su^2 ) du           I(α)=∫_0 ^(+∞)    cos(αx)e^(−sx^2 ) dx=((2s)/α) ∫_0 ^(+∞) xsin(αx)e^(−sx^2 ) dx=−((2s)/α) I′(α)  I(α)=Ae^(−(1/(4s))α^2 ) , I(0)=((√π)/(2(√s)))    ⇒I(α)=((√π)/(2(√s)))  e^(−(1/(4s))α^2 )   ∴ L(sin((√t)))=((√π)/(2s^(3/2) ))e^(−(1/(4s)))

1/L(J0(t))=1π0π0+cos(tsin(θ))estdtdθ=1π0πsdθsin2(θ)+s2=2sπ0π2dθs2+cos2(θ)=2sπ0+du1+s2+s2u2=11+s22/β(n,n)=Γ(n)Γ(n)Γ(2n)=Γ(12)Γ(n)212nΓ(n)22n1Γ(2n)Γ(12)=212nΓ(n)Γ(12)Γ(n+12)=212nβ(n,12)3/L1(ddsL1(Ln(1+1s2)))=L1(2s1+s22s)=2(cos(t)1)L1(Ln(1+1s2))=21cos(t)t4/???5/02x3J0(x)dx=02x2(xJ11(x))dx=8J1(2)202x2J21(x)dx=8(J1(2)J2(2))61/01xmLnn(x)dx=x=et(1)n0+tne(m+1)tdt=(1)nn!(m+1)m+162/+e2θdθe3θ+1=t=e3θ130+t23dt1+t=2π337/L(sin(t))=0+sin(t)estdt=u=t20+usin(u)esu2du=1s0+cos(u)esu2duI(α)=0+cos(αx)esx2dx=2sα0+xsin(αx)esx2dx=2sαI(α)I(α)=Ae14sα2,I(0)=π2sI(α)=π2se14sα2L(sin(t))=π2s32e14s

Terms of Service

Privacy Policy

Contact: info@tinkutara.com