Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 14965 by b.e.h.i.8.3.4.1.7@gmail.com last updated on 06/Jun/17

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 06/Jun/17

in triangle ABD:  CF,IH,GJ,are the perpendicular   bisector of sides.  AD=12,AB=14,BD=16  ...............(√(.......))....===(√(........))...=.....  S_(IK^Δ J) =?      (S=area)

intriangleABD:CF,IH,GJ,aretheperpendicularbisectorofsides.AD=12,AB=14,BD=16..........................===...........=.....SIKJΔ=?(S=area)

Commented by ajfour last updated on 06/Jun/17

IJ=(KC)(tan A+tan B) .

IJ=(KC)(tanA+tanB).

Answered by ajfour last updated on 06/Jun/17

 (refer to diagram commented below)   To locate D(x,y) foremost:  x^2 +y^2 =b^2 =144  (x−14)^2 +y^2 =a^2 =256  subtracting we get:  28x−196=144−256  ⇒ x=((84)/(28))=3  y=(√(b^2 −x^2 )) =(√(144−9))=3(√(15))  AJ=(((b/2))/(cos A))=(((b/2))/((x/b)))=(b^2 /(2x))=((144)/(2×3))=24  CJ=AJ−AC=AJ−(d/2)=24−7=17  IB=(((a/2))/(cos B))=(((a/2))/((d−x)/a))=(a^2 /(2(d−x)))        =((256)/(2(14−3)))=((128)/(11))   IC=IB−BC=IB−(d/2)=((128)/(11))−7=((51)/(11))   IJ=IC+CJ=((51)/(11))+17=((238)/(11))  ∠CKJ=∠A  so, tan A=tan (∠CKJ)=((CJ)/(CK))=((CJ)/h)   ⇒  h=((CJ)/(tan A))=((CJ)/((y/x)))=((17)/(√(15)))   Area_(△IJK) =(1/2)(IJ)h         =(1/2)(((238)/(11)))(((17)/(√(15))))=((119×17)/(11(√(15))))        =((7×17×17)/(11(√(15))))≈ 47.5 sq units •

(refertodiagramcommentedbelow)TolocateD(x,y)foremost:x2+y2=b2=144(x14)2+y2=a2=256subtractingweget:28x196=144256x=8428=3y=b2x2=1449=315AJ=(b/2)cosA=(b/2)(x/b)=b22x=1442×3=24CJ=AJAC=AJd2=247=17IB=(a/2)cosB=(a/2)(dx)/a=a22(dx)=2562(143)=12811IC=IBBC=IBd2=128117=5111IJ=IC+CJ=5111+17=23811CKJ=Aso,tanA=tan(CKJ)=CJCK=CJhh=CJtanA=CJ(y/x)=1715AreaIJK=12(IJ)h=12(23811)(1715)=119×171115=7×17×17111547.5squnits

Commented by ajfour last updated on 06/Jun/17

Commented by ajfour last updated on 06/Jun/17

not to scale, as AJ>AB when  values of a=16, b=12, and d=14.

nottoscale,asAJ>ABwhenvaluesofa=16,b=12,andd=14.

Commented by RasheedSoomro last updated on 06/Jun/17

N!CE approach !  Without analytic approach it will be  more challenging!

N!CEapproach!Withoutanalyticapproachitwillbemorechallenging!

Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 06/Jun/17

IH=((2a.S)/(a^2 +c^2 −b^2 ))=(S/(c.cosB)),GJ=(S/(c.cosA))  ∠CIK=90−∠B,∠CJK=90−∠A  ((GJ)/(sinA))=AJ⇒AJ=(S/(c.sinA.cosA))=(b/(2cosA))  ⇒(c/2)+CJ=(b/(2cosA))=((c.cosA+a.cosD)/(2cosA))  ⇒CJ=((a.cosD)/(2cosA))  BI=((IH)/(sinB))⇒BI=(S/(c.cosB.sinB))=(a/(2cosB))  ⇒(c/2)+CI=(a/(2cosB))=((c.cosB+b.cosD)/(2cosB))  ⇒CI=((b.cosD)/(2cosB))  ⇒IJ=CJ+CI=((acosD)/(2cosA))+((bcosD)/(2cosB))=  =((cosD)/2)(((acosB+bcosA)/(cosAcosB)))=((c.cosD)/(2cosA.cosB))  tg(90−A)=((CK)/(CJ))⇒CK=((cosA)/(sinA)).((acosD)/(2cosA))=  =((a.cosD)/(2sinA))⇒CK=((a.cosD)/(2sinA))  S_(IK^Δ J) =(1/2).CK.IJ=(1/2).((acosD)/(2sinA)).((c.cosD)/(2cosAcosB))  ⇒S_(ΔIKJ) =(1/8).((ac.cos^2 D)/(sinA.cosA.cosB))=  =((cos^2 D)/(4sinAcosAsinBcosB)).S=((1+cos2D)/(2sin2A.sin2B)).S  ⇒S_(IJK) =((1+cos2D)/(2sin2A.sin2B)).S_(ABD)

IH=2a.Sa2+c2b2=Sc.cosB,GJ=Sc.cosACIK=90B,CJK=90AGJsinA=AJAJ=Sc.sinA.cosA=b2cosAc2+CJ=b2cosA=c.cosA+a.cosD2cosACJ=a.cosD2cosABI=IHsinBBI=Sc.cosB.sinB=a2cosBc2+CI=a2cosB=c.cosB+b.cosD2cosBCI=b.cosD2cosBIJ=CJ+CI=acosD2cosA+bcosD2cosB==cosD2(acosB+bcosAcosAcosB)=c.cosD2cosA.cosBtg(90A)=CKCJCK=cosAsinA.acosD2cosA==a.cosD2sinACK=a.cosD2sinASIKJΔ=12.CK.IJ=12.acosD2sinA.c.cosD2cosAcosBSΔIKJ=18.ac.cos2DsinA.cosA.cosB==cos2D4sinAcosAsinBcosB.S=1+cos2D2sin2A.sin2B.SSIJK=1+cos2D2sin2A.sin2B.SABD

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 06/Jun/17

for:  a=16,b=12,c=14  p=((16+12+14)/2)=21  S=(√(21×7×9×5))=21(√(15))  cosA=((144+196−256)/(2×12×14))=(1/4),sinA=((√(15))/4)  cosB=((256+196−144)/(2×16×14))=.68,sinB=.73  cosD=((256+144−196)/(2×12×16))=.53  sin2A=2×(1/4)×((√(15))/4)=.48  sin2B=2×.68×.73=.99  cos2D=2×(.53)^2 −1=−.44  ⇒S_(IJK) =((1−.44)/(2×.48×.99)).21(√(15))=48.07 .■

for:a=16,b=12,c=14p=16+12+142=21S=21×7×9×5=2115cosA=144+1962562×12×14=14,sinA=154cosB=256+1961442×16×14=.68,sinB=.73cosD=256+1441962×12×16=.53sin2A=2×14×154=.48sin2B=2×.68×.73=.99cos2D=2×(.53)21=.44SIJK=1.442×.48×.99.2115=48.07.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com