Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 149940 by ajfour last updated on 08/Aug/21

Commented by ajfour last updated on 08/Aug/21

see Q.149894

seeQ.149894

Answered by ajfour last updated on 09/Aug/21

 A(−2h+2scos θ, −2k)   ;    B(−2h, −2k+2ssin θ)   side of eql.△ = 2s   Eq. of circle_(−)     x^2 +y^2 =r^2      ....(1)    Eq. of DP_(−)     y−ssin θ+k=cot θ(x−scos θ+h)    using this in ..(1)    x^2 +[hcot θ−k+ssin θ         +cot θ(x−scos θ)]^2      =r^2     further    x−scos θ+h=s(√3)sin θ    ⇒ (r^2 /s^2 )=(cos θ+(√3)sin θ−h)^2                     +(sin θ+(√3)cos θ−k)^2   2s=((2r)/( (√((cos θ+(√3)sin θ−h)^2 +(cos θ+(√3)sin θ−h)^2 ))))  say  2s=((2r)/( (√(f(θ)))))  f(θ)=(cos θ+(√3)sin θ−h)^2              +(sin θ+(√3)cos θ−k)^2   f(θ)=h^2 +k^2 −2h(cos θ+(√3)sin θ)          −2k(sin θ+(√3)cos θ)          +(cos θ+(√3)sin θ)^2           +(sin θ+(√3)cos θ)^2   f ′(θ)=2h(sin θ−(√3)cos θ)          −2k(cos θ−(√3)sin θ)          +4(√3)cos 2θ    =2(h+k(√3))sin θ         −2(k+h(√3))cos θ        +4(√3)cos 2θ  let   cos 2θ=s  f ′(θ)=(√2)(h+k(√3))(√(2−(1+s)))                 −(√2)(k+h(√3))(√(1+s))                 +4(√3)(1+s)−4(√3)  f ′(θ)=0  ⇒  2(h+k(√3))^2 (2−z^2 )     ={(√2)(k+h(√3))z+4(√3)z^2 −4(√3)}^2   .....

A(2h+2scosθ,2k);B(2h,2k+2ssinθ)sideofeql.=2sEq.ofcirclex2+y2=r2....(1)Eq.ofDPyssinθ+k=cotθ(xscosθ+h)usingthisin..(1)x2+[hcotθk+ssinθ+cotθ(xscosθ)]2=r2furtherxscosθ+h=s3sinθr2s2=(cosθ+3sinθh)2+(sinθ+3cosθk)22s=2r(cosθ+3sinθh)2+(cosθ+3sinθh)2say2s=2rf(θ)f(θ)=(cosθ+3sinθh)2+(sinθ+3cosθk)2f(θ)=h2+k22h(cosθ+3sinθ)2k(sinθ+3cosθ)+(cosθ+3sinθ)2+(sinθ+3cosθ)2f(θ)=2h(sinθ3cosθ)2k(cosθ3sinθ)+43cos2θ=2(h+k3)sinθ2(k+h3)cosθ+43cos2θletcos2θ=sf(θ)=2(h+k3)2(1+s)2(k+h3)1+s+43(1+s)43f(θ)=02(h+k3)2(2z2)={2(k+h3)z+43z243}2.....

Commented by mr W last updated on 09/Aug/21

great solution!

greatsolution!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com