Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 150944 by ajfour last updated on 16/Aug/21

Commented by mr W last updated on 17/Aug/21

Commented by ajfour last updated on 17/Aug/21

okay find minimum side length, sir.

Commented by mr W last updated on 17/Aug/21

the green one is the smallest   equilateral. i can determine it only  numerically.

thegreenoneisthesmallestequilateral.icandetermineitonlynumerically.

Answered by ajfour last updated on 17/Aug/21

sin α=(a/(b−a))  A[(√((b−a)^2 −a^2 )), a]≡[c,a]  let  T(p,q)  let s be circumradius of such an  equilateral triangle.  P[p−scos θ, q+ssin θ]  Q[p+scos (60°−θ), q+ssin (60°−θ)]  R[p+scos (60°+θ), q−ssin (60°+θ)]  now  (p−scos θ−c)^2 +(q+ssin θ−a)^2      = a^2     ...(i)  [p+scos (60°−θ)]^2 +[q+ssin (60°−θ)]^2    = b^2       ...(ii)  q=ssin (60°+θ)  ⇒ (p−scos θ−c)^2     +[((s(√3))/2)cos θ+((3s)/2)sin θ−a]^2 =a^2      ........(I)  [p+(s/2)cos θ+((s(√3))/2)sin θ]^2     +[s(√3)cos θ]^2 =b^2       ....(II)  (II)−(I)  {((3s)/2)cos θ+((s(√3))/2)sin θ+c}  ×{2p−(s/2)cos θ+((s(√3))/2)sin θ−c}  +    {((s(√3))/2)cos θ−((3s)/2)sin θ+a}  ×{((3(√3)s)/2)cos θ+((3s)/2)sin θ−a}    = b^2 −a^2   from here  p=f(s,θ)  now using (I) or (II)  h(s,θ)=0  from here we get s_(min) .  Minimum side length of  such an equilateral △ would  then be s_(min) (√3).

sinα=abaA[(ba)2a2,a][c,a]letT(p,q)letsbecircumradiusofsuchanequilateraltriangle.P[pscosθ,q+ssinθ]Q[p+scos(60°θ),q+ssin(60°θ)]R[p+scos(60°+θ),qssin(60°+θ)]now(pscosθc)2+(q+ssinθa)2=a2...(i)[p+scos(60°θ)]2+[q+ssin(60°θ)]2=b2...(ii)q=ssin(60°+θ)(pscosθc)2+[s32cosθ+3s2sinθa]2=a2........(I)[p+s2cosθ+s32sinθ]2+[s3cosθ]2=b2....(II)(II)(I){3s2cosθ+s32sinθ+c}×{2ps2cosθ+s32sinθc}+{s32cosθ3s2sinθ+a}×{33s2cosθ+3s2sinθa}=b2a2fromherep=f(s,θ)nowusing(I)or(II)h(s,θ)=0fromherewegetsmin.Minimumsidelengthofsuchanequilateralwouldthenbesmin3.

Answered by ajfour last updated on 17/Aug/21

center of semicircle origin.  center of circle   A[(√((b−a)^2 −a^2 )), a]≡(c,a)  let bottom corner be B(p,0)  let side of △ be s.  x_C ^2 +y_C ^2 =b^2   (x_C −p)^2 +y_C ^2 =s^2   subtracting  2px_C −p^2 =b^2 −s^2   x_C =((b^2 −s^2 +p^2 )/(2p))  ((x_c +p)/2)−((s(√3))/2)sin φ=x_D   (y_C /2)+((s(√3))/2)cos φ=y_D   (x_D −c)^2 +(y_D −a)^2 =a^2   cos φ=((x_C −p)/s)  ;  sin φ=(y_C /s)  x_C +p−s(√3)(((√(b^2 −x_C ^2 ))/s))=2x_D   y_C +s(√3)(((x_C −p)/s))=2y_D   Now  {x_C +p−s(√3)((y_C /s))−2c}^2   +{y_C +s(√3)(((x_C −p)/s))−a}^2 =a^2   but  x_C =((b^2 −s^2 +p^2 )/(2p))  ;     y_C =(√(b^2 −x_C ^2 ))  =(√(b^2 −(((b^2 −s^2 +p^2 )/(2p)))^2 ))  ⇒  {((b^2 −s^2 +p^2 )/(2p))+p−(√3)(√(b^2 −(((b^2 −s^2 +p^2 )/(2p)))^2 ))−2c}^2   +{(√(b^2 −(((b^2 −s^2 +p^2 )/(2p)))^2 ))+(√3)(((b^2 −s^2 +p^2 )/(2p)))−(√3)p−a}^2 =a^2   eq. is implicit in  s and p.  we can graph it and can find  the s_(min) .

centerofsemicircleorigin.centerofcircleA[(ba)2a2,a](c,a)letbottomcornerbeB(p,0)letsideofbes.xC2+yC2=b2(xCp)2+yC2=s2subtracting2pxCp2=b2s2xC=b2s2+p22pxc+p2s32sinϕ=xDyC2+s32cosϕ=yD(xDc)2+(yDa)2=a2cosϕ=xCps;sinϕ=yCsxC+ps3(b2xC2s)=2xDyC+s3(xCps)=2yDNow{xC+ps3(yCs)2c}2+{yC+s3(xCps)a}2=a2butxC=b2s2+p22p;yC=b2xC2=b2(b2s2+p22p)2{b2s2+p22p+p3b2(b2s2+p22p)22c}2+{b2(b2s2+p22p)2+3(b2s2+p22p)3pa}2=a2eq.isimplicitinsandp.wecangraphitandcanfindthesmin.

Commented by mr W last updated on 17/Aug/21

i also can only solve in this way to find  the s_(min) .

ialsocanonlysolveinthiswaytofindthesmin.

Answered by ajfour last updated on 17/Aug/21

O(center of semicircle)  z_A =(√((b−a)^2 −a^2 ))+ia=c+ia  z_B =p  z_C =p+s(cos θ+isin θ)  z_D =p+s[−cos (((2π)/3)−θ)+isin (((2π)/3)−θ)]  ∣z_D −z_A ∣=a  ∣z_C ∣=b  (p+scos θ)^2 +s^2 sin^2 θ=b^2   ⇒  p^2 +2spcos θ+s^2 =b^2      ....(i)  {p+scos (((2π)/3)−θ)−c}^2     +{ssin (((2π)/3)−θ)−a}^2 =a^2    ..(ii)  say  ((2π)/3)−θ=φ , then  ⇒  p^2 +s^2 +c^2 +2spcos φ       =2cp+2cscos φ+2assin φ  ⇒  b^2 +2sp(cos φ−cos θ)+c^2     = 2cp+2s(ccos φ+asin φ)  p=((b^2 +c^2 −2s(ccos φ+asin φ))/(2c−2s(cos φ−cos θ)))  using this in  p^2 +2spcos θ+s^2 =b^2      ....(i)  ⇒  {((b^2 +c^2 −2s(ccos φ+asin φ))/(2c−2s(cos φ−cos θ)))+scos θ}^2      +s^2 sin^2 θ=b^2   ⇒  {((b^2 +c^2 −2s[c+atan (((2π)/3)−θ)])/(2c−2s[1−((cos θ)/(cos (((2π)/3)−θ)))]))+scos θ}^2      +s^2 sin^2 θ=b^2   for a=2, b=5  c=(√5)  {((30−2s[(√5)+2tan (((2π)/3)−θ)])/(2(√5)−2s[1−((cos θ)/(cos (((2π)/3)−θ)))]))+scos θ}^2     +s^2 sin^2 θ=25  {((30−2s(√5)−2s((((√3)cos θ−sin θ)/(cos θ−(√3)sin θ))))/(2(√5)−2s+4s(((cos θ)/( (√3)sin θ+cos θ)))))+scos θ}^2    +s^2 sin^2 θ=25  graph of this f(s,θ)=25  should give s_(min) .  sir can u help?

O(centerofsemicircle)zA=(ba)2a2+ia=c+iazB=pzC=p+s(cosθ+isinθ)zD=p+s[cos(2π3θ)+isin(2π3θ)]zDzA∣=azC∣=b(p+scosθ)2+s2sin2θ=b2p2+2spcosθ+s2=b2....(i){p+scos(2π3θ)c}2+{ssin(2π3θ)a}2=a2..(ii)say2π3θ=ϕ,thenp2+s2+c2+2spcosϕ=2cp+2cscosϕ+2assinϕb2+2sp(cosϕcosθ)+c2=2cp+2s(ccosϕ+asinϕ)p=b2+c22s(ccosϕ+asinϕ)2c2s(cosϕcosθ)usingthisinp2+2spcosθ+s2=b2....(i){b2+c22s(ccosϕ+asinϕ)2c2s(cosϕcosθ)+scosθ}2+s2sin2θ=b2{b2+c22s[c+atan(2π3θ)]2c2s[1cosθcos(2π3θ)]+scosθ}2+s2sin2θ=b2fora=2,b=5c=5{302s[5+2tan(2π3θ)]252s[1cosθcos(2π3θ)]+scosθ}2+s2sin2θ=25{302s52s(3cosθsinθcosθ3sinθ)252s+4s(cosθ3sinθ+cosθ)+scosθ}2+s2sin2θ=25graphofthisf(s,θ)=25shouldgivesmin.sircanuhelp?

Answered by mr W last updated on 17/Aug/21

Commented by mr W last updated on 18/Aug/21

s=side length of triangle  OC=c=(√((b−a)^2 −a^2 ))=(√(b(b−2a)))  say A(u,0)  u=c−s cos θ+(√(b^2 −s^2  sin^2  θ))    eqn. of small circle:  x^2 +(y−a)^2 =a^2   x_D =u+s cos ((π/3)+θ)  y_D =s sin ((π/3)+θ)  (u+s cos ((π/3)+θ))^2 +(s sin ((π/3)+θ)−a)^2 =a^2   u^2 +2su cos ((π/3)+θ)+s^2 −2as sin ((π/3)+θ)=0  u=−s cos ((π/3)+θ)+(√(s(2a−s sin ((π/3)+θ))sin ((π/3)+θ)))    c−s cos θ+(√(b^2 −s^2  sin^2  θ))=−s cos ((π/3)+θ)+(√(s(2a−s sin ((π/3)+θ))sin ((π/3)+θ)))  ⇒s[cos θ−cos ((π/3)+θ)]−(√(b^2 −s^2  sin^2  θ))+(√(s[2a−s sin ((π/3)+θ)]sin ((π/3)+θ)))=c  λ[cos θ−cos ((π/3)+θ)]−(√(1−λ^2  sin^2  θ))+(√(λ[μ−λ sin ((π/3)+θ)]sin ((π/3)+θ)))=(√(1−μ))  with μ=((2a)/b)≤1, λ=(s/b)  from this relationship between s and  θ we can find the s_(min)  graphically.  example: a=2, b=5  s_(min) =3.8157 at θ=1.4075 (80.64°)

s=sidelengthoftriangleOC=c=(ba)2a2=b(b2a)sayA(u,0)u=cscosθ+b2s2sin2θeqn.ofsmallcircle:x2+(ya)2=a2xD=u+scos(π3+θ)yD=ssin(π3+θ)(u+scos(π3+θ))2+(ssin(π3+θ)a)2=a2u2+2sucos(π3+θ)+s22assin(π3+θ)=0u=scos(π3+θ)+s(2assin(π3+θ))sin(π3+θ)cscosθ+b2s2sin2θ=scos(π3+θ)+s(2assin(π3+θ))sin(π3+θ)s[cosθcos(π3+θ)]b2s2sin2θ+s[2assin(π3+θ)]sin(π3+θ)=cλ[cosθcos(π3+θ)]1λ2sin2θ+λ[μλsin(π3+θ)]sin(π3+θ)=1μwithμ=2ab1,λ=sbfromthisrelationshipbetweensandθwecanfindthesmingraphically.example:a=2,b=5smin=3.8157atθ=1.4075(80.64°)

Commented by mr W last updated on 17/Aug/21

Commented by mr W last updated on 17/Aug/21

Commented by mr W last updated on 17/Aug/21

Commented by mr W last updated on 18/Aug/21

Commented by mr W last updated on 18/Aug/21

Terms of Service

Privacy Policy

Contact: info@tinkutara.com