Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 151351 by mathdanisur last updated on 20/Aug/21

Answered by dumitrel last updated on 20/Aug/21

 λ(√((a^2 +b^2 )/2))+((2ab)/(a+b))≥((λ+1)/2)(a+b)  if a=b true  suppose a<b ;(a/b)=t∈(0;1)  ⇔λ(√((t^2 +1)/2))+((2t)/(t+1))≥(((λ+1)(t+1))/2)  ⇔λ((((√(2t^2 +2))−t−1)/2))≥((t+1)/2)−((2t)/(t+1))⇔  λ∙(((λ−1)^2 )/( (√(2t^2 +2))+t+1))≥(((t−1)^2 )/(t+1))⇔λ≥(((√(2(t^2 +1)))+t+1)/(t+1)) true  (√2)>((√(2(t^2 +1)))/(t+1))  λ≥(√2)+1>((√(2(t^2 +1)))/(t+1))+((t+1)/(t+1))=(((√(2(t^2 +1)))+t+1)/(t+1))

λa2+b22+2aba+bλ+12(a+b)ifa=btruesupposea<b;ab=t(0;1)λt2+12+2tt+1(λ+1)(t+1)2λ(2t2+2t12)t+122tt+1λ(λ1)22t2+2+t+1(t1)2t+1λ2(t2+1)+t+1t+1true2>2(t2+1)t+1λ2+1>2(t2+1)t+1+t+1t+1=2(t2+1)+t+1t+1

Commented by mathdanisur last updated on 20/Aug/21

Nice Ser, Thank You

NiceSer,ThankYou

Terms of Service

Privacy Policy

Contact: info@tinkutara.com