Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 151573 by amin96 last updated on 22/Aug/21

Answered by Olaf_Thorendsen last updated on 22/Aug/21

S_n  = Σ_(k=0) ^(n−1) (1/((3k+1)(3k+2)(3k+3)))  S_n  = Σ_(k=0) ^(n−1) (((1/2)/(3k+1))−(1/(3k+2))+((1/2)/(3k+3)))  S_n  = (1/2)Σ_(k=0) ^(n−1) (1/(3k+1))−Σ_(k=0) ^(n−1) (1/(3k+2))+(H_n /6)  S_n  = (1/2)(((Ψ(n+(1/3)))/3)+(γ/3)+((π(√3))/(18))+((ln3)/2))  −(((Ψ(n+(2/3)))/3)+(γ/3)−((π(√3))/(18))+((ln3)/2))+(H_n /6)  S_n  = ((Ψ(n+(1/3)))/6)−((Ψ(n+(2/3)))/3)−(γ/6)+((π(√3))/(12))−((ln3)/4)+(H_n /6)

Sn=n1k=01(3k+1)(3k+2)(3k+3)Sn=n1k=0(1/23k+113k+2+1/23k+3)Sn=12n1k=013k+1n1k=013k+2+Hn6Sn=12(Ψ(n+13)3+γ3+π318+ln32)(Ψ(n+23)3+γ3π318+ln32)+Hn6Sn=Ψ(n+13)6Ψ(n+23)3γ6+π312ln34+Hn6

Commented by Tawa11 last updated on 22/Aug/21

Weldone sir.

Weldonesir.

Commented by Tawa11 last updated on 22/Aug/21

  Please one more sir.     How is:        S_n    =   Σ_(k  =  0) ^(n   −   1)  (1/(3k  +  1))     =    ((ψ(n  +  (1/3)))/3)   +   (γ/3)   +   ((π(√3))/(18))   +   ((ln 3)/2)  Thanks sir. Help me to understand.

Pleaseonemoresir.Howis:Sn=n1k=013k+1=ψ(n+13)3+γ3+π318+ln32Thankssir.Helpmetounderstand.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com