All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 151573 by amin96 last updated on 22/Aug/21
Answered by Olaf_Thorendsen last updated on 22/Aug/21
Sn=∑n−1k=01(3k+1)(3k+2)(3k+3)Sn=∑n−1k=0(1/23k+1−13k+2+1/23k+3)Sn=12∑n−1k=013k+1−∑n−1k=013k+2+Hn6Sn=12(Ψ(n+13)3+γ3+π318+ln32)−(Ψ(n+23)3+γ3−π318+ln32)+Hn6Sn=Ψ(n+13)6−Ψ(n+23)3−γ6+π312−ln34+Hn6
Commented by Tawa11 last updated on 22/Aug/21
Weldonesir.
Pleaseonemoresir.Howis:Sn=∑n−1k=013k+1=ψ(n+13)3+γ3+π318+ln32Thankssir.Helpmetounderstand.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com