Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 151636 by Tawa11 last updated on 22/Aug/21

Commented by mr W last updated on 22/Aug/21

do you know the psi−function and  ψ(1+z)=−γ+Σ_(n=1) ^∞ ((1/n)−(1/(n+z))) ?  if not, then you should learn this at  first.     Σ_(n=0) ^∞ (1/((n+α)(n+β)))  =(1/(β−α))Σ_(n=0) ^∞ [(1/(n+α))−(1/(n+β))]  =(1/(β−α)){Σ_(n=0) ^∞ [(1/(n+α))]−Σ_(n=0) ^∞ [(1/(n+β))]}  =(1/(β−α)){Σ_(n=1) ^∞ [(1/(n+(α−1)))]−Σ_(n=1) ^∞ [(1/(n+(β−1)))]}  =(1/(β−α)){−γ+Σ_(n=1) ^∞ (1/n)−ψ(1+(α−1))−[−γ+Σ_(n=1) ^∞ (1/n)−ψ(1+(β−1))]}  =(1/(β−α)){ψ(β)−ψ(α)}

doyouknowthepsifunctionandψ(1+z)=γ+n=1(1n1n+z)?ifnot,thenyoushouldlearnthisatfirst.n=01(n+α)(n+β)=1βαn=0[1n+α1n+β]=1βα{n=0[1n+α]n=0[1n+β]}=1βα{n=1[1n+(α1)]n=1[1n+(β1)]}=1βα{γ+n=11nψ(1+(α1))[γ+n=11nψ(1+(β1))]}=1βα{ψ(β)ψ(α)}

Commented by Tawa11 last updated on 22/Aug/21

Please help.  Explain how        Σ_(n  =  0) ^∞  (1/((n   +   (2/3))(n  +  (4/3))))      =    ((ψ((4/3))   −   ψ((2/3)))/((4/3)    −   (2/3)))  I need the rule please.  Explain.  Thanks.

Pleasehelp.Explainhown=01(n+23)(n+43)=ψ(43)ψ(23)4323Ineedtheruleplease.Explain.Thanks.

Commented by Tawa11 last updated on 22/Aug/21

Wow. This is interesting. God bless you sir.  Am reading on it. So, I ask the question so that I can read further.  Thanks sir. I appreciate.

Wow.Thisisinteresting.Godblessyousir.Amreadingonit.So,IaskthequestionsothatIcanreadfurther.Thankssir.Iappreciate.

Commented by Tawa11 last updated on 22/Aug/21

After going through your explanation sir. I understand it perfectly.  I am happy. God bless you sir

Aftergoingthroughyourexplanationsir.Iunderstanditperfectly.Iamhappy.Godblessyousir

Answered by Olaf_Thorendsen last updated on 22/Aug/21

S = (2/9)Σ_(n=0) ^∞ (1/((n+(2/3))(n+(4/3))))  S = (2/9).((ψ((4/3))−ψ((2/3)))/((4/3)−(2/3)))  • ψ(z+1)  = ψ(z)+(1/z)  ⇒ ψ((1/3)+1)  = ψ((1/3))+(1/(1/3))  ψ((4/3))  = ψ((1/3))+3    (1)    • ψ(1−z) −ψ(z) = πcot(πz)  ψ(1−(1/3)) −ψ((1/3)) = πcot((π/3))  ψ((2/3))  = ψ((1/3))+(π/( (√3)))    (2)    • (1)−(2) :  ψ((4/3)) −ψ((2/3)) = 3−(π/( (√3)))    • S = (2/9).((3−(π/( (√3))))/(2/3)) = 1−(π/(3(√3)))

S=29n=01(n+23)(n+43)S=29.ψ(43)ψ(23)4323ψ(z+1)=ψ(z)+1zψ(13+1)=ψ(13)+11/3ψ(43)=ψ(13)+3(1)ψ(1z)ψ(z)=πcot(πz)ψ(113)ψ(13)=πcot(π3)ψ(23)=ψ(13)+π3(2)(1)(2):ψ(43)ψ(23)=3π3S=29.3π323=1π33

Commented by Tawa11 last updated on 22/Aug/21

Wow. Thanks sir. I appreciate. God bless you.  I am visiting all your solution in the forum on this. Thank you sir.

Wow.Thankssir.Iappreciate.Godblessyou.Iamvisitingallyoursolutionintheforumonthis.Thankyousir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com