All Questions Topic List
Arithmetic Questions
Previous in All Question Next in All Question
Previous in Arithmetic Next in Arithmetic
Question Number 151641 by Tawa11 last updated on 22/Aug/21
Answered by Kamel last updated on 22/Aug/21
Sn=∑n−1k=0∫01x3kdx=∫011−x3n1−x3dx=t=x313∫01t−23−tn−231−tdt=13(Ψ(n+13)+γ−∫011−t−231−tdt)=Ψ(n+13)3+γ3−∫01x2−11−x3dx=Ψ(n+13)3+γ3+12∫011+2x+11+x+x2dx=Ψ(n+13)3+γ3+Ln(3)2+12∫011(x+12)2+34dx=Ψ(n+13)3+γ3+Ln(3)2+13(Arctan(23+13)−Arctan(13))=Ψ(n+13)3+γ3+Ln(3)2+13(Arctan(13))=Ψ(n+13)3+γ3+Ln(3)2+π318
Commented by Tawa11 last updated on 22/Aug/21
Wow.Godblessyousir.Iappreciate.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com