All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 151673 by mathdanisur last updated on 22/Aug/21
Answered by Kamel last updated on 22/Aug/21
L=limn→+∞∏2nk=nππ−Arctan(1k)=limn→+∞∏2nk=nπkπk−1=limn→+∞n.(n+1)(n+2)...(2n)(n−1π)(n+1−1π)...(2n−1π)=limn→+∞Γ(2n+1)Γ(n−1π)Γ(2n−1π+1)Γ(n)=limn→+∞(n)2n(n−1π−1)n41π(n−1)n(n−12π)2n=limn→+∞(1−1π(n−1))n−141π(1−12πn)2n=4π
Terms of Service
Privacy Policy
Contact: info@tinkutara.com