Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 15170 by b.e.h.i.8.3.4.1.7@gmail.com last updated on 07/Jun/17

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 07/Jun/17

ABCD,is a square with area=1  each acute angles such that:∡ADA′  are equail to:15^•   1)show that :the white shape is a square.  2)find it′s area.  3)show that: DD′ is the bisect of ∡ADA′.  4)find part of AD^Δ A′s area that located  on the right side of line AB′.

ABCD,isasquarewitharea=1eachacuteanglessuchthat:ADAareequailto:151)showthat:thewhiteshapeisasquare.2)finditsarea.3)showthat:DDisthebisectofADA.4)findpartofADAΔsareathatlocatedontherightsideoflineAB.

Commented by ajfour last updated on 08/Jun/17

it should be given, that A′D=AD ...

itshouldbegiven,thatAD=AD...

Answered by mrW1 last updated on 08/Jun/17

side length of the white square:  p=1×cos 15°−1×sin 15°  =(√(((1+cos 30°)/2) ))− (√((1−cos 30°)/2))  =(((√(2+(√3)))−(√(2−(√3))))/2)  area of white square:  p^2 =((((√(2+(√3)))−(√(2−(√3))))/2))^2 =(1/2)     ∠A′AB′=((180−15)/2)−(90−15)=7.5°  ⇒A′A is bisector of ∠BAB′    let M=intersection of DA′ and AB′  A′M=DA′−DM=1−cos 15°  area of ΔAMA′  =(1/2)A′M×AM=(1/2)×(1−cos 15°)×sin 15°  =(1/2)×(sin 15°−((sin 30°)/2))  =(1/2)×(((√(2−(√3)))/2)−(1/4))  =((2(√(2−(√3)))−1)/8)≈0.0044

sidelengthofthewhitesquare:p=1×cos15°1×sin15°=1+cos30°21cos30°2=2+3232areaofwhitesquare:p2=(2+3232)2=12AAB=180152(9015)=7.5°AAisbisectorofBABletM=intersectionofDAandABAM=DADM=1cos15°areaofΔAMA=12AM×AM=12×(1cos15°)×sin15°=12×(sin15°sin30°2)=12×(23214)=223180.0044

Commented by mrW1 last updated on 08/Jun/17

you are right, thanks. it is fixed now.

youareright,thanks.itisfixednow.

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 08/Jun/17

thank you my master.but way our   answers are different?

thankyoumymaster.butwayouranswersaredifferent?

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 08/Jun/17

dear master mrW1!i think relation:         ((A′M)/(AM))=((AM)/(DM))    ,  is not correct.

dearmastermrW1!ithinkrelation:AMAM=AMDM,isnotcorrect.

Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 08/Jun/17

AD=1  M,is the intersect of :DA′,AB′.  sin15=((AM)/1)⇒AM=sin15=.2588  cos15=((DM)/1)⇒DM=cos15=.9659  tg((15)/2)=((MA′)/(MA))⇒MA′=MA.tg7.5  tg7.5=((sin15)/(1+cos15))=0.1317  ⇒MA′=.2588×.1317=.0341  S=(1/2).MA′.MA=(1/2)×0.0341×.2588=.00441

AD=1M,istheintersectof:DA,AB.sin15=AM1AM=sin15=.2588cos15=DM1DM=cos15=.9659tg152=MAMAMA=MA.tg7.5tg7.5=sin151+cos15=0.1317MA=.2588×.1317=.0341S=12.MA.MA=12×0.0341×.2588=.00441

Commented by mrW1 last updated on 08/Jun/17

I think here is error    ⇒MA′=(((√6)−(√2))/4).(1−((((√3)−(√2)+1)^2 )/2))=  ≠((√2)/4)(2(√2)−(√3)+1)  (error)

IthinkhereiserrorMA=624.(1(32+1)22)=24(223+1)(error)

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 08/Jun/17

yes.it is now corrected.thanks.

yes.itisnowcorrected.thanks.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com