Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 15175 by b.e.h.i.8.3.4.1.7@gmail.com last updated on 08/Jun/17

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 08/Jun/17

in triangle ABC:  BC=13,AB=14,AC=15  DJ,is the perpendicular bisector of AC.  DI⊥BC.  ........................  Radius of inescribed circle in triangle  DI^Δ J=?

intriangleABC:BC=13,AB=14,AC=15DJ,istheperpendicularbisectorofAC.DIBC.........................RadiusofinescribedcircleintriangleDIJΔ=?

Answered by mrW1 last updated on 08/Jun/17

cos A=((14^2 +15^2 −13^2 )/(2×14×15))=(3/5)  sin A=(√(1−((3/5))^2 ))=(4/5)  cos C=((13^2 +15^2 −14^2 )/(2×13×15))=((33)/(65))  sin C=(√(1−(((33)/(65)))^2 ))=((56)/(65))  DJ=((15)/2)×tan A=((15)/2)×(4/3)=10  DI=((15)/2)×sin C=((15)/2)×((56)/(65))=6.46  JI=(√(DJ^2 +DI^2 −2×DJ×DI×cos ∠JDI))  ∠JDI=∠C  ⇒JI=(√(10^2 +6.46^2 −2×10×6.46×((33)/(65))))=8.73  s=(10+6.46+8.73)/2=12.59  r_i =(√(((12.59−10)(12.59−6.46)(12.59−8.73))/(12.59)))=2.21

cosA=142+1521322×14×15=35sinA=1(35)2=45cosC=132+1521422×13×15=3365sinC=1(3365)2=5665DJ=152×tanA=152×43=10DI=152×sinC=152×5665=6.46JI=DJ2+DI22×DJ×DI×cosJDIJDI=CJI=102+6.4622×10×6.46×3365=8.73s=(10+6.46+8.73)/2=12.59ri=(12.5910)(12.596.46)(12.598.73)12.59=2.21

Commented by mrW1 last updated on 08/Jun/17

area of a triangle A with sides a,b,c is  A=(√(s(a−a)(s−b)(s−c)))  A=(1/2)ar_i +(1/2)br_i +(1/2)cr_i =(1/2)(a+b+c)r_i =sr_i   ⇒r_i =(√(((s−a)(s−b)(s−c))/s))

areaofatriangleAwithsidesa,b,cisA=s(aa)(sb)(sc)A=12ari+12bri+12cri=12(a+b+c)ri=sriri=(sa)(sb)(sc)s

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 08/Jun/17

thank you dear mrW1. it is perfect.

thankyoudearmrW1.itisperfect.

Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 09/Jun/17

∡CDI=90−∡C,∡IDJ=∡C.  cos(90−C)=((DI)/(b/2))⇒DI=(b/2).sinC  tgA=((DJ)/(b/2))⇒DJ=(b/2).tgA  h_I =DI.sinC=(b/2).sinC.sinC=(b/2)sin^2 C  h_J =DJ.sinC=(b/2).tgA.sinC  IJ^2 =DI^2 +DJ^2 −2DI.DJ.cosC=  =(b^2 /4)sin^2 C+(b^2 /4)tg^2 A−2(b^2 /4)tgA.sinCcosC  ⇒IJ=(b/2)(√(tg^2 A+sin^2 C−tgA.sin2C))  IJ.h_D =DI.h_I ⇒h_D =(((b^2 /4)sin^2 C.tgA)/((b/2)(√(tg^2 A+sin^2 C−tgA.sin2C))))  h_D =(b/2).((sin^2 C.tgA)/(√(tg^2 A+sin^2 C−tgAsin2C)))  (1/r)=(1/h_I )+(1/h_J )+(1/h_D )=  =(2/(bsin^2 C))+(2/(btgA.sinC))+((2(√(tg^2 A+sin^2 C−tgAsin2C)))/(btgA.sin^2 C))=  =(2/(bsin^2 CtgA))(tgA+sinC+(√(tg^2 A+sin^2 C−tgAsinC)))  ⇒r=((bsin^2 C.tgA)/(2(tgA+sinC+(√(tg^2 A+sin^2 C−tgAsin2C)))))

CDI=90C,IDJ=C.cos(90C)=DIb/2DI=b2.sinCtgA=DJb/2DJ=b2.tgAhI=DI.sinC=b2.sinC.sinC=b2sin2ChJ=DJ.sinC=b2.tgA.sinCIJ2=DI2+DJ22DI.DJ.cosC==b24sin2C+b24tg2A2b24tgA.sinCcosCIJ=b2tg2A+sin2CtgA.sin2CIJ.hD=DI.hIhD=b24sin2C.tgAb2tg2A+sin2CtgA.sin2ChD=b2.sin2C.tgAtg2A+sin2CtgAsin2C1r=1hI+1hJ+1hD==2bsin2C+2btgA.sinC+2tg2A+sin2CtgAsin2CbtgA.sin2C==2bsin2CtgA(tgA+sinC+tg2A+sin2CtgAsinC)r=bsin2C.tgA2(tgA+sinC+tg2A+sin2CtgAsin2C)

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 09/Jun/17

tgA=(4/3),sinC=((56)/(65)),cosC=((33)/(65)),b=15  bsin^2 C.tgA=15×((56^2 )/(65^2 ))×(4/3)=14.84  tg^2 A+sin^2 C−tgAsin2C=  =((16)/9)+((56^2 )/(65^2 ))−2×(4/3)×((33×56)/(65^2 ))=1.35  ⇒r=((14.84)/(2((4/3)+((56)/(65))+(√(1.35)))))=((14.84)/(6.72))=2.21 .■

tgA=43,sinC=5665,cosC=3365,b=15bsin2C.tgA=15×562652×43=14.84tg2A+sin2CtgAsin2C==169+5626522×43×33×56652=1.35r=14.842(43+5665+1.35)=14.846.72=2.21.

Commented by mrW1 last updated on 09/Jun/17

GOO...D! an other way.

GOO...D!anotherway.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com