Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 151851 by Tawa11 last updated on 23/Aug/21

Answered by OlafThorendsen last updated on 23/Aug/21

I = ∫_(−(π/2)) ^(+(π/2)) (x^2 +ln(((π+x)/(π−x))))cosx dx   (1)  Let u = −x :  I = ∫_(−(π/2)) ^(+(π/2)) (u^2 +ln(((π−u)/(π+u))))cosu du  I = ∫_(−(π/2)) ^(+(π/2)) (u^2 −ln(((π+u)/(π−u))))cosu du  (2)  (((1)+(2))/2) : I = ∫_(−(π/2)) ^(+(π/2)) u^2 cosu du  I = [x^2 sinx−2sinx+2xcosx]_(−(π/2)) ^(+(π/2))   I = (π^2 /2)−4

I=π2+π2(x2+ln(π+xπx))cosxdx(1)Letu=x:I=π2+π2(u2+ln(πuπ+u))cosuduI=π2+π2(u2ln(π+uπu))cosudu(2)(1)+(2)2:I=π2+π2u2cosuduI=[x2sinx2sinx+2xcosx]π2+π2I=π224

Commented by Tawa11 last updated on 23/Aug/21

Thanks sir. God bless you.

Thankssir.Godblessyou.

Commented by peter frank last updated on 24/Aug/21

good

good

Terms of Service

Privacy Policy

Contact: info@tinkutara.com