All Questions Topic List
Trigonometry Questions
Previous in All Question Next in All Question
Previous in Trigonometry Next in Trigonometry
Question Number 152010 by RB95 last updated on 25/Aug/21
Commented by RB95 last updated on 25/Aug/21
SltPouviezvousm′aider?
Answered by puissant last updated on 25/Aug/21
Exercice1:1)cos4x=(eix+e−ix2)4=116(ei4x+4ei3xe−ix+6ei2xe−i2x+4eixe−i3x+e−i4x)=116((ei4x+e−i4x)+4(ei2x+e−i2x)+6)⇒cos4x=18cos4x+12cos2x+38⇒cos4x=8(cos4x−12cos2x−38)⇒cos4x=8cos4x−4(2cos2x−1)−3⇒cos4x=8cos4x−8cos2x+1..2)linearisonssin5xsin5x=(eix−e−ix2i)5=132i(ei5x−5ei4xe−ix+10ei3xe−i2x−10ei2xe−i3x+5eixe−i4x−e−i5x)=132i((ei5x−ei5x)−5(ei3x−e−i3x)+10(eix−e−ix))⇒sin5x=116sin5x−516sin3x+58sinx3)→sin(a+b)=sinacosb+cosasinb→cos(a+b)=cosacosb−sinasinb→tan(a+b)=sin(a+b)cos(a+b)=sinacosb+cosacosbcosacosb−sinasinbendivisantparcosacosb,ontan(a+b)=tana+tanb1−tanatanb..→sin(a−b)=sinacosb−cosacosb→defaconanalogue,ontrouvequetan(a−b)=tana−tanb1+tanatanb..Exercice2:selonMOIVRE,onsaitque(eiθ)n=einθ⇒(cosθ+isinθ)n=(cosnθ+isinnθ)serttoidecapourrepondreauxquestionsdel′exercie..Exercice3:1)jenevoispas.maisonsaitquearg(zn)≡narg(z)[2π]2)Enutilisantlafactorisationdesanglesmoities,ontrouve:z=[1+ei(π2+α)]n=2ncosn(π4+α2)ein(π4+α2)etdoncRe(z)=2ncosn(π4+α2)cos(nπ4+nα2)Re(z)=0⇔α=π2+2kπouα=(2k−1)πn−π2..Exercice4:1)z=22+i22nommonswet−wlesracinescarrees´dez.w=2+122+i2−122⇒w=122+2+i122−2d′abordz=eiπ4onremarqueque:(eiπ8)2=(ei2π8)=eiπ4donccos(π8)=122+2etsin(π8)=122−2(paridentification)careiπ8=cos(π8)+isin(π8)..2)→z=(1+i31−i)nonmontretrivialementque1+i3=2eiπ3et1−i=2e−iπ4⇒z=(22ei7π12)n=(2)nei7nπ12lemoduleest(2)netl′argumentest7nπ12;θ∈]−π;π[.→z=(1+cosθ+isinθ)n=(1+eiθ)n=(eiθ2(eiθ2+e−iθ2))n≪d′apreslafactorisationdesanglesmoities´≫.⇒z=(2cos(θ2)eiθ2)n=2ncosn(θ2)einθ2alorslemoduledezest2ncosn(θ2)etl′argumentestarg(z)=nθ2,θ∈]−π;π[
Terms of Service
Privacy Policy
Contact: info@tinkutara.com