Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 152980 by mr W last updated on 03/Sep/21

Commented by mathdanisur last updated on 03/Sep/21

a^7 +b^7 +c^7  = 7abc(ab+bc+ca)^2   a^4 +b^4 +c^4  = 2(ab+bc+ca)^2   S = ((7abc(ab+bc+ca)^2 )/(abc[2(ab+bc+ca)^2 ])) = (7/2) = 3,5

a7+b7+c7=7abc(ab+bc+ca)2a4+b4+c4=2(ab+bc+ca)2S=7abc(ab+bc+ca)2abc[2(ab+bc+ca)2]=72=3,5

Commented by mr W last updated on 03/Sep/21

solution please!

solutionplease!

Commented by mr W last updated on 03/Sep/21

find (((a^2 +b^2 +c^2 )(a^5 +b^5 +c^5 ))/(a^7 +b^7 +c^7 ))=?

find(a2+b2+c2)(a5+b5+c5)a7+b7+c7=?

Commented by mathdanisur last updated on 03/Sep/21

= ((10)/7)

=107

Commented by mathdanisur last updated on 03/Sep/21

Thanks ser  ((a^7 +b^7 +c^7 )/7) = ((a^5 +b^5 +c^5 )/5)  ((a^2 +b^2 +c^2 )/2)

Thankssera7+b7+c77=a5+b5+c55a2+b2+c22

Commented by mathdanisur last updated on 03/Sep/21

a+b+c=0  a^k +b^k +c^k =S_k   ;  k∈Z^+  ⇒ S_(k+3) = abc S_k + (1/2) S_2 S_(k+1)   a+b+c=0  ;  a;b;c∈IR  ⇒ S_0 =3   ⇒ a^0 +b^0 +c^0 =3  ⇒ S_1 =0   ⇒ a+b+c=0  ⇒ S_2 ^2 =2S_4    ⇒ (a^2 +b^2 +c^2 )^2 =2(a^4 +b^4 +c^4 )  ⇒ S_3 =3abc ⇒ a^3 +b^3 +c^3 =3abc  ⇒ 6S_5 =5S_2 S_3    ⇒ 6(a^5 +b^5 +c^5 )=5(a^2 +b^2 +c^2 )(a^3 +b^3 +c^3 )  ⇒ 6S_7 =7S_3 S_4    ⇒ 6(a^7 +b^7 +c^7 )=7(a^3 +b^3 +c^3 )(a^4 +b^4 +c^4 )  ⇒ 10S_7 =7S_2 S_5  ⇒ 10(a^7 +b^7 +c^7 )=7(a^2 +b^2 +c^2 )(a^5 +b^5 +c^5 )  .........

a+b+c=0ak+bk+ck=Sk;kZ+Sk+3=abcSk+12S2Sk+1a+b+c=0;a;b;cIRS0=3a0+b0+c0=3S1=0a+b+c=0S22=2S4(a2+b2+c2)2=2(a4+b4+c4)S3=3abca3+b3+c3=3abc6S5=5S2S36(a5+b5+c5)=5(a2+b2+c2)(a3+b3+c3)6S7=7S3S46(a7+b7+c7)=7(a3+b3+c3)(a4+b4+c4)10S7=7S2S510(a7+b7+c7)=7(a2+b2+c2)(a5+b5+c5).........

Commented by mathdanisur last updated on 03/Sep/21

Prove that if  a+b+c=0  then:  ((a^7 +b^7 +c^7 )/7) = ((a^5 +b^5 +c^5 )/5) = ((a^2 +b^2 +c^2 )/2)

Provethatifa+b+c=0then:a7+b7+c77=a5+b5+c55=a2+b2+c22

Commented by mr W last updated on 03/Sep/21

thanks alot sir!

thanksalotsir!

Commented by mr W last updated on 03/Sep/21

but   ((a^7 +b^7 +c^7 )/7) = ((a^5 +b^5 +c^5 )/5) = ((a^2 +b^2 +c^2 )/2)  is not true.

buta7+b7+c77=a5+b5+c55=a2+b2+c22isnottrue.

Commented by Tawa11 last updated on 04/Sep/21

Nice

Nice

Answered by ajfour last updated on 03/Sep/21

a=2p, b=c=−p  (((128−2))/(2(16+2)))=((126)/(36))=(7/2)

a=2p,b=c=p(1282)2(16+2)=12636=72

Commented by mr W last updated on 03/Sep/21

thanks sir!

thankssir!

Answered by mr W last updated on 04/Sep/21

p_k =a^k +b^k +c^k   e_1 =a+b+c  e_2 =ab+bc+ca  e_3 =abc    p_1 =e_1 =0  p_2 =e_1 p_1 −2e_2 =−2e_2   p_3 =e_1 p_2 −e_2 p_1 +3e_3 =3e_3   p_4 =e_1 p_3 −e_2 p_2 +e_3 p_1 =2e_2 ^2   p_5 =e_1 p_4 −e_2 p_3 +e_3 p_2 =−5e_2 e_3   p_6 =e_1 p_5 −e_2 p_4 +e_3 p_3 =−2e_2 ^3 +3e_3 ^2   p_7 =e_1 p_6 −e_2 p_5 +e_3 p_4 =7e_2 ^2 e_3   ⇒((a^7 +b^7 +c^7 )/(abc(a^4 +b^4 +c^4 )))=(p^7 /(e_3 p_4 ))=((7e_2 ^2 e_3 )/(e_3 ×2e_2 ^2 ))=(7/2)  ((a^7 +b^7 +c^7 )/7)=e_2 ^2 e_3 =((−2e_2 )/2)×((−5e_2 e_3 )/5)=(p_2 /2)×(p_5 /5)  ⇒((a^7 +b^7 +c^7 )/7)=((a^2 +b^2 +c^2 )/2)×((a^5 +b^5 +c^5 )/5)

pk=ak+bk+cke1=a+b+ce2=ab+bc+cae3=abcp1=e1=0p2=e1p12e2=2e2p3=e1p2e2p1+3e3=3e3p4=e1p3e2p2+e3p1=2e22p5=e1p4e2p3+e3p2=5e2e3p6=e1p5e2p4+e3p3=2e23+3e32p7=e1p6e2p5+e3p4=7e22e3a7+b7+c7abc(a4+b4+c4)=p7e3p4=7e22e3e3×2e22=72a7+b7+c77=e22e3=2e22×5e2e35=p22×p55a7+b7+c77=a2+b2+c22×a5+b5+c55

Commented by mathdanisur last updated on 04/Sep/21

thanks ser

thanksser

Terms of Service

Privacy Policy

Contact: info@tinkutara.com