Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 153189 by liberty last updated on 05/Sep/21

Answered by EDWIN88 last updated on 05/Sep/21

 eq of circle 16x^2 +16y^2 +48x−8y−43=  with center point  { ((x=−((48)/(32))=−(3/2))),((y=(8/(32))=(1/4))) :}  with radius =(√((9/4)+(1/6)−(((−43)/(16)))))  ⇒r=(√((36+1+43)/(16))) =((4(√5))/4)=(√5)   let P((√5)cos  θ−(3/2), (√5)sin θ+(1/4))  the distance point P to line r  ⇒d=((∣8(√5)cos θ−12−4((√5)sin θ+(1/4))+73∣)/( (√(64+16))))  ⇒d=((∣8(√5) cos θ−4(√5)sin θ+60∣)/(4(√5)))  minimum λ=8(√5) cos θ−4(√5)sin θ+60  is −(√(64×5+16×5)) +60=40  d_(min) =((40)/(4(√5))) = ((10)/( (√5)))=2(√5)  when cos (θ+tan^(−1) ((1/2)))=−1  θ=π−tan^(−1) ((1/2))→ { ((cos θ=−tan^(−1) ((1/2))=−0.45)),((sin θ=tan^(−1) ((1/2))=0.45)) :}

eqofcircle16x2+16y2+48x8y43=withcenterpoint{x=4832=32y=832=14withradius=94+16(4316)r=36+1+4316=454=5letP(5cosθ32,5sinθ+14)thedistancepointPtolinerd=85cosθ124(5sinθ+14)+7364+16d=85cosθ45sinθ+6045minimumλ=85cosθ45sinθ+60is64×5+16×5+60=40dmin=4045=105=25whencos(θ+tan1(12))=1θ=πtan1(12){cosθ=tan1(12)=0.45sinθ=tan1(12)=0.45

Commented by EDWIN88 last updated on 05/Sep/21

in other way   d_(min) = d[(−(3/2),(1/4)),8x−4y+73=0]−radius  d[(−(3/2),(1/4)),8x−4y+73=0]=   ((∣8(−(3/2))−4((1/4))+73∣)/(4(√5))) = ((60)/(4(√5))) =((15)/( (√5)))=3(√5)  d_(min) = 3(√5)−(√5) =2(√5)

inotherwaydmin=d[(32,14),8x4y+73=0]radiusd[(32,14),8x4y+73=0]=8(32)4(14)+7345=6045=155=35dmin=355=25

Answered by mr W last updated on 05/Sep/21

32x+32yy′+48−8y′=0  32x+32y×2+48−8×2=0  ⇒x+2y+1=0  16(−2y−1)^2 +16y^2 +48(−2y−1)−8y−43=0  16y^2 −8y−15=0  y=(5/4),−(3/4)  x=−(7/2), (1/2)  d_(min) =((∣−8×(7/2)−4×(5/4)+73∣)/( (√(8^2 +4^2 ))))=((10)/( (√5)))  from point (−(7/2),(5/4))

32x+32yy+488y=032x+32y×2+488×2=0x+2y+1=016(2y1)2+16y2+48(2y1)8y43=016y28y15=0y=54,34x=72,12dmin=8×724×54+7382+42=105frompoint(72,54)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com