All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 154143 by mnjuly1970 last updated on 14/Sep/21
Answered by phanphuoc last updated on 14/Sep/21
u=−lnx→e−u=x→−e−udu=dxΩ=∫∞0e−xsinx1+e−2x(−e−xdx)=∫0∞e−2xsinxdx1+e−2x=∫0∞e−2xsinxΣ(−1)ne−2nxdx=Σ(−1)n∫0∞e−2x(n+1)sinxdx=
Answered by puissant last updated on 14/Sep/21
Ω=∫01xsin(lnx)1+x2dxu=−lnx→x=e−u→dx=−e−uduΩ=−∫∞0e−usinu1+e−2u(−e−udu)=−∫0∞e−2usinu1+e−2udu=−∫0∞sinu1+e2udu=∫0∞∑∞n=1(−1)ne−2nusinudu=∑∞n=1(−1)n∫0∞e−2nusinudu=∑∞n=1(−1)n×14n2+1=∑∞n=1(−1)n4n2+1=π4csch(π2)−12..∴∵Ω=πcsch(π2)−24...................Lepuissant..............
Commented by mnjuly1970 last updated on 15/Sep/21
grate..
Terms of Service
Privacy Policy
Contact: info@tinkutara.com